Assignment 11

1) An experiment is repeated five times and a quantity X is measured. The five readings are $\mathbf{1}$ point $4.8,4.9,5.1,4.7,5.3$. The average value of $e^{X / 5}$ based on these reading is closest to
2.5

- 2.6
- 2.7
- 2.8

Accepted Answers:

2.7
2) An experiment is repeated five times and a quantity X is measured. The five readings are 1 point $4.8,4.9,5.1,4.7,5.3$. The second moment of X based on these reading is closest to
24.4
24.6
24.8
25.0

Accepted Answers:

24.6
3) A variable x satisfies the probability distribution $p(x)=\sqrt{1 / \pi} e^{-x^{2}}$. The range of x is from $-\infty^{1}$ point to ∞. The fifth moment of x is equal to

0
1
5/4

- $4 / 5$

Accepted Answers:

0
4) Consider a 1-D random walk on the integer line. Thus the position of the random walker can 1 point be any integer. The random walker starts at $x=0$. In each step, it hops to the right with probability 0.60 to

- 20
30None of the above

Accepted Answers:

None of the above

5) A biased coin has proabability of heads of 0.7 and probability of tails of 0.3 . The probability of 1 point getting exactly 7 heads in 10 tosses is closest to
0.7

Accepted Answers:

0.25
6) A certain radioactive species has a decay rate of 0.03 /year. In a sample containing

1 point 10^{15} nuclei, the probability that exactly n decay in t years is given by
$(0.03 t)^{n} e^{-0.03 t}$
$\frac{1}{n!} e^{-0.03 t}$
$\frac{(0.03 t)^{n}}{n!} e^{-0.03 t}$
None of the above

Accepted Answers:

$$
\frac{(0.03 t)^{n}}{n!} e^{-0.03 t}
$$

7) A certain quantity x has a distribution given by

1 point
$p(x)=\frac{1}{\sqrt{\pi}} e^{-x^{2}}$
The standard deviation of x is equal to
1
2
(1/2
$1 / \sqrt{2}$

Accepted Answers:
 $1 / \sqrt{2}$

8) A certain quantity x has a distribution given by

1 point $p(x)=\frac{1}{\sqrt{\pi}} e$
The average value of is equal to
1
2

1/2

Accepted Answers:

3/4
9) For a particle in a 1-D box located between 0 and 2, the wavefunction in some state is given 1 point by
$\psi(x)=\sin (2 \pi x)$
The value of $\left\langle x p_{x}\right\rangle$ for his state is equal to
0
1
$i \hbar$

None of the above

Accepted Answers:

None of the above
10For nitrogen gas $(\mathrm{MW}=28)$ at 280 K , the average value of $v_{x}^{2} v_{y}^{2}$ is equal to (in terms of the 1 point ideal gas constant R expressed in $\mathrm{mJ} / \mathrm{mol} \mathrm{K}$
$10 R$
$100 R^{2}$
None of the above

Accepted Answers:

$100 R^{2}$

