Assignment 10

1) Consider the PDE $\frac{\partial^{2} u(x, t)}{\partial x^{2}}=\frac{\partial u}{\partial t}$ in the domain $-\infty<x<\infty$, where $u(x, t)$ is some time dependent field. The form of this equation is typical of thewave equationSchrodinger equationdiffusion equationNone of the above

Accepted Answers:

diffusion equation
2) Consider the PDE $\frac{\partial^{2} u(x, t)}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}$ in the domain $-L<x<L$, where $u(x, t)$ is some time dependent field. The solutions to this equation typically involve
real exponentials
complex exponentials
polynomial functions
none of the above

Accepted Answers:

complex exponentials
3) The wave equation in 3 D is given by $\nabla^{2} u(x 0, y, t)=\frac{1}{4}{ }_{\partial t^{2}}^{\partial^{2} u(x, y, t)}$

1 point The velocity of the wave is equal to

- 2
- 4
- $1 / 2$
-1/4

Accepted Answers:

2
4) On complete separation of the 3D time-dependent Schrodinger equation, we get

1 point

1 ordinary and 1 partial differential equation
3 ordinary differential equations
3 ordinary and 1 partial differential equation
4 ordinary differential equations

Accepted Answers:

4 ordinary differential equations
5) Solution of the radial part of the Schrodinger equation of a particle confined to a 2D circular 1 point domain typically involves

Hermite polynomials
Associated Legendre polynomials
Bessel functions
complex exponentials

Accepted Answers:

Bessel functions
6) Fourier transform of the 1D heat diffusion equation gives a/anordinary differential equations in the time and wave vector variables.partial differential equation in the time variable and ordinary differential equation in the wave vector variable.
partial differential equation in the time variable and an algebraic equation in the wave vector variable
None of the above

Accepted Answers:

partial differential equation in the time variable and an algebraic equation in the wave vector variable
7) The solution of an axisymmetric vibrating drum of radius R involves
$J_{0}(r)$
$J_{0}(r / R)$
$J_{0}\left(\alpha_{n} r / R\right)$ where $J_{0}\left(\alpha_{n}\right)=0$
$J_{0}\left(\alpha_{n} R / r\right)$ where $J_{0}\left(\alpha_{n}\right)=0$

Accepted Answers:

$J_{0}\left(\alpha_{n} r / R\right)$ where $J_{0}\left(\alpha_{n}\right)=0$
8) The solution of the partial differential equation $\frac{\partial c}{\partial t}=\frac{\partial^{2} c}{\partial x^{2}}$ with initial

1 point condition $c(x, 0)=2$ is
$2 \cos x$
$2(\sin x+\cos x) e^{-t}$
$2 \cos x e^{-t}$
2

Accepted Answers:

2
${ }^{9}$) Consider the PDE $\frac{\partial^{2} u(x, y, t)}{\partial x^{2}}+4 y \frac{\partial u(x, y, t)}{\partial y}+2 \frac{\partial^{3} u(x, y)}{\partial t^{3}}=0$
1 point
On solving this using separation of variables, we get 3 ODEs. The ODE in the variable y is (where c is a constant)

$$
\begin{aligned}
& \frac{1}{Y(y)} \frac{d Y(y)}{d y}=c \\
& \frac{y}{Y(y)} \frac{d Y(y)}{d y}=c \\
& \frac{1}{Y(y)} \frac{d Y(y)}{d y}=c y \\
& \text { None of the above }
\end{aligned}
$$

Accepted Answers:

$$
\frac{y}{Y(y)} \frac{d Y(y)}{d y}=c
$$

10Consider the PDE $\nabla^{2} u(r, \theta, \phi)=-u(r, \theta, \phi)$. On solving this equation using separation of 1 point variables, we get a θ dependent equation which is (where c is a constant)

$$
\begin{aligned}
& \frac{1}{\sin \theta} \frac{d}{d \theta} \sin \theta \frac{d S(\theta)}{d \theta}+\frac{m^{2} S(\theta)}{\sin ^{2}(\theta)}=c S(\theta) \\
& \frac{1}{\sin \theta} \frac{d}{d \theta} \sin \theta \frac{d S(\theta)}{d \theta}=c \\
& \frac{1}{\sin \theta} \frac{d^{2} S(\theta)}{d \theta^{2}}=c S(\theta) \\
& \text { None of the above }
\end{aligned}
$$

Accepted Answers:

$$
\frac{1}{\sin \theta} \frac{d}{d \theta} \sin \theta \frac{d S(\theta)}{d \theta}+\frac{m^{2} S(\theta)}{\sin ^{2}(\theta)}=c S(\theta)
$$

