Unit 2 - Week 1:
 Vectors, linear independence, vector differentiation and transfomation

Assignment 1

- 1
- 2
- 3
\bigcirc
∞

1) The dimensionality of the vector space of all functions of a single variable $f(x)$ is

1 point

Accepted Answers:

∞
${ }^{2)}$ The gradient of $r=|\vec{r}|$, where $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, is equal to
1 point
\vec{r}
$\hat{i}+\hat{j}+\hat{k}$
$\frac{\vec{r}}{r}$
None of the above

Accepted Answers:
 $\frac{\vec{r}}{r}$

3) Of the following sets of vectors, the set that can be used as a basis in 3D vector space is

1 point
$(1,0,0),(0,1,0)$ and (1,1,1)
$(1,0,0),(0,1,0)$ and $(1,1,0)$
$(1,0,0),(0,1,0)$ and $(2,1,0)$
All of the above

$$
(1,0,0),(0,1,0) \text { and }(1,1,1)
$$

4) The divergence of $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ is equal to

1 point

- 3
$x+y+z$
None of the above

Accepted Answers:

3
5) Of the following pairs of functions, the one that has linearly dependent functions is
$\sin (x)$ and $\cos (x)$
$\sin ^{2}(x)$ and $\cos ^{2}(x)$
$\sin (x)$ and $\sin (x) \cos (x)$
None of the above

Accepted Answers:

None of the above
${ }^{6)}$ An incompressible fluid is described by a velocity field $\vec{v}(x, y, z)=y \hat{i}+x \hat{j}$. The vorticity $\vec{\omega}(x, y, z)$ of this field is given by the curl \vec{v}. The vorticity is equal to

$$
\begin{gathered}
0 \\
\hat{i}+\hat{j} \\
\hat{i}-\hat{j} \\
2 \hat{k}
\end{gathered}
$$

Accepted Answers:
 0

7) A unit point charge located at the origin gives rise to an electric potential given by
$V(r)=A / r$ where A is a constant and $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k} \mid$ and $r=|\vec{r}|$. The force on a unit charge due this potential at the point $(1,0,0)$ is equal to
$A / 2 \hat{i}$
$A \hat{i}$
\wedge
Ak
None of the above

Accepted Answers:

 $\psi(x, y, z)=A \sin (2 \pi x) \sin (\pi y / 2) \sin (\pi z)$for a box from $0 \leq x \leq 2,0 \leq y \leq 4,0 \leq z \leq 1$. The value of A so that this wavefunction is normalized is equal to
$\sqrt{8}$
2

- 1

None of the above

Accepted Answers:

1
${ }^{9)}$ The work done by the force $\vec{f}(x, y)=(\hat{i}+\hat{j}) /\left(x^{2}+y^{2}\right)$ in moving a particle from $(1,1)$ to $(2,2)$ along a straight line path is given equal to

0

- 1
- 2
- $1 / 2$

Accepted Answers:

1/2
10)The force below that produces a path independent work is
$5 x^{2} \hat{i}+5 x^{2} \hat{j}$
$5 y^{2} \hat{i}+5 x^{2} \hat{j}$
$5 x y^{2} \hat{i}+5 y x^{2} \hat{j}$
None of the above

Accepted Answers:

$$
5 x y^{2} \hat{i}+5 y x^{2} \hat{j}
$$

