Unit 2 - Week 1: Vectors, linear independence, vector differentiation and transfomation

Assignment 1	
1) The dimensionality of the vector space of all functions of a single variable $f(x)$ is 1 2 3 ∞	1 point
Accepted Answers: ∞ ²⁾ The gradient of $r = \vec{r} $, where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, is equal to \vec{r} \vec{r} $\hat{i} + \hat{j} + \hat{k}$ $\frac{\vec{r}}{r}$	1 point
None of the above Accepted Answers: $\frac{\vec{r}}{r}$ 3) Of the following sets of vectors, the set that can be used as a basis in 3D vector space is (1,0,0), (0,1,0) and (1,1,1) (1,0,0), (0,1,0) and (1,1,0) (1,0,0), (0,1,0) and (2,1,0) All of the above	1 point

Accepted Answers:

29/12/2017 Advanced Mathematical Methods for Chemistry - - Unit 2 - Week 1: Vectors, linear independence, vector differentiation ...

(1,0,0), (0,1,0) and (1,1,1) (4) The divergence of $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (1,0,0), (0,1,0) and (1,1,1) (1) The divergence of $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (1) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (1) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (1) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (1) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (1) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (1) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (1) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (1) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (2) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (3) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (3) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (3) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (4) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (5) Of the following pairs of functions, the one that has linearly dependent functions is (4) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (5) Of the following pairs of functions, the one that has linearly dependent functions is (4) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (5) Of the following pairs of functions, the one that has linearly dependent functions is (5) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (6) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (7) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (7) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (7) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (7) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (7) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (7) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (7) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (7) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (7) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (7) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (7) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (7) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (7) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (7) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (7) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal to (7) $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is equal

Accepted Answers: None of the above

 $\sin^2(x)$ and $\cos^2(x)$

sin(x) and sin(x) cos(x)None of the above

⁶⁾ An incompressible fluid is described by a velocity field $\vec{v}(x, y, z) = y\hat{i} + x\hat{j}$. The vorticity $\vec{\omega}(x, y, z)$ of this field is given by the curl \vec{v} . The vorticity is equal to

Accepted Answers: 0

7) A unit point charge located at the origin gives rise to an electric potential given by **1** point V(r) = A/r where A is a constant and $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$. The force on a unit charge due this potential at the point (1,0,0) is equal to

Accepted Answers:

$A\hat{i}$

8) A quantum mechanical particle in a 3D box has a wavefunction given by **1** point $\psi(x, y, z) = A \sin(2\pi x) \sin(\pi y/2) \sin(\pi z)$ for a box from $0 \le x \le 2, 0 \le y \le 4, 0 \le z \le 1$. The value of A so that this wavefunction is normalized is equal to

 $\sqrt{8}$ 2 1None of the above

Accepted Answers:

1

⁹⁾ The work done by the force $\vec{f}(x, y) = (\hat{i} + \hat{j})/(x^2 + y^2)$ in moving a particle from (1,1) to **1** *point* (2,2) along a straight line path is given equal to

\bigcirc	0
\bigcirc	1
\bigcirc	2
	1/2

Accepted Answers: 1/2

10) The force below that produces a path independent work is

1 point

$$5x^{2}\hat{i} + 5x^{2}\hat{j}$$

$$5y^{2}\hat{i} + 5x^{2}\hat{j}$$

$$5xy^{2}\hat{i} + 5yx^{2}\hat{j}$$
None of the above

Accepted Answers: $5xy^2\hat{i} + 5yx^2\hat{j}$

29/12/2017 Advanced Mathematical Methods for Chemistry - - Unit 2 - Week 1: Vectors, linear independence, vector differentiation ...