Mathematics for Chemistry: Assignment 8

June 16, 2017

1. The Frobenius method can be applied about the point $x=0$ for the differential equation
(a)

$$
y^{\prime \prime}+y^{\prime} / x^{2}+y / x^{2}=0
$$

(b)

$$
y^{\prime \prime}+y^{\prime} / x+y / x^{3}=0
$$

(c)

$$
y^{\prime \prime}+y^{\prime} / x+y / x^{2}=0
$$

(d) None of the above

Answer (c)
2. The indicial equation for the differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0
$$

solved using the Frobenius method with a trial solution $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ is
(a) $r^{2}=0$ (b) $r^{2}-1=0$ (c) $r^{2}-r-1=0$
(d) None of the above

Answer (a)
3. The correct statement regarding solution of the ODE

$$
\left(1-x^{2}\right) y^{\prime \prime}-4 x y^{\prime}+4 y=0
$$

using the Frobenius method about $x=1$ is
(a) The equation can be solved using the Frobenius method with $r=0$ about $x=1$.
(b) The equation can be solved using the Frobenius method about $x=1$ but r is not equal to 0.
(c) The equation cannot be solved using the Frobenius method about $x=1$.
(d) There is not enough information to decide whether the equation can be solved using the Frobenius method about $x=1$.

Answer (b)
4. The indicial equation for the differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y-9 y / 4=0
$$

solved using the Frobenius method with the usual notation is
(a) $r^{2}-1=0$ (b) $r^{2}-r=0$ (c) $r^{2}-9 / 4=0$
(d) None of the above

Answer (c)
5. THe correct statement regarding solution of the ODE

$$
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0
$$

about the point $x=1$ is
(a) The equation can be solved using the Frobenius method with $r=0$ about $x=1$.
(b) The equation cannot be solved using the Frobenius method about the point $x=1$.
(c) The equation can be solved using the Frobenius method about $x=1$ but r is not equal to 0.
(d) There is not enough information to decide whether the equation can be solved using the Frobenius method about $x=1$.

Answer (a)
6. One of the solutions of the differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y-16 y=0
$$

involves
(a) $J_{0}(x)(\mathrm{b}) J_{2}(x)(\mathrm{c}) J_{4}(x)$
(d) None of the above

Answer (c)
7. In the solution for the radial part of the Hydrogen atom for $n=3, l=0$, the solution contains a polynomial multiplying an exponential function. The degree of the polynomial is
(a) 0 (b) 1 (c) 2 (d) 3

Answer (c)
8. The recursion relation for the differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y-4 y=0
$$

can take the form
(a)

$$
a_{2 n}=\frac{(-1)^{n} a_{0}}{2^{2 n} n!2}
$$

(b)

$$
a_{2 n}=\frac{(-1)^{n} 2 a_{0}}{2^{2 n}(n!)^{2}}
$$

(c)

$$
a_{2 n}=\frac{-a_{0}}{2^{n} n!2}
$$

(d) None of the above

Answer (b)
9. Writing the 2-dimensional partial differential equation

$$
\nabla^{2} u(x, y)+4 u(x, y)=0
$$

in plane polar coordinates and looking at the solution that is independent of the angular coordinate, we get a differential equation for the radial coordinate r. One solution of this differential equation involves
(a) $J_{0}(2 r)(b) J_{2}(2 r)(c) J_{4}(r)$
(d) None of the above

Answer (d)
10. The solution of the radial part of the hydrogen atom for a certain orbital is proportional to $r^{2} P_{2}(r) e^{-r / 4 a_{0}}$. The values of the quantum numbers n and l are
(a) $n=2, l=1$ (b) $n=3, l=1$ (c) $n=4, l=2$
(d) None of the above

Answer (d)

