Mathematics for Chemistry: Assignment 7

June 15, 2017

1. Consider the ODE

$$
\frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+y=0
$$

Solving this ODE using the power series method with $y=\sum_{n=0}^{\infty} a_{n} x^{n}$, we get the recursion relation
(a)

$$
a_{n+2}=a_{n} \frac{2 n+1}{(n+1)(n+2)}
$$

(b)

$$
a_{n+2}=a_{n} \frac{2 n-1}{(n+1)(n+2)}
$$

(c)

$$
a_{n+2}=a_{n} \frac{n}{(n+1)(n-2)}
$$

(d) None of the above

Answer (b)
2. Consider the ODE

$$
\frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+y=0
$$

The condition for a solution to this ODE to be a polynomial of order k is
$\begin{array}{ll}\text { (a) } k=1 & \text { (b) } k=2\end{array}$
(c) $k=$ odd positive integer (d) No positive integer solution for k

Answer (d)
3. Consider the ODE

$$
\frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+y=0 .
$$

This is solved using the power series method by substituting

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

The relation between a_{4} and a_{0} is
(a) $a_{4}=1 / 4 a_{0}$ (b) $a_{4}=1 / 8 a_{0}$ (c) $a_{4}=-1 / 8 a_{0}$
(d) None of the above

Answer (c)
4. Using the Rodrigues formula for Legendre Polynomials

$$
P_{n}(x)=\frac{(-1)^{n}}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(1-x^{2}\right)^{n}
$$

the value of the Legendre Polynomial $P_{5}(x)$ is
(a)

$$
\frac{1}{4}\left(42 x^{5}-16 x^{3}+31 x\right)
$$

(b)

$$
\frac{1}{4}\left(14 x^{5}-41 x^{3}+30 x\right)
$$

(c)

$$
\frac{1}{4}\left(63 x^{5}-70 x^{3}+15 x\right)
$$

(d) None of the above

Answer (c)
5. The powers of x that appear in the expression for the Legendre Polynomial $P_{6}(x)$ are
(a) $0,2,4,6,8$
(b) $0,2,4,8$
(c) $2,4,6$
(d) None of the above

Answer (b)
6. Let a_{0} and a_{1} be arbitrary constants. Let $S_{o d d}(x)$ and $S_{\text {even }}(x)$ denote infinite series in x with only odd and even powers respectively. The general solution of the DE

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}+6 y=0
$$

can be expressed in the form
(a)

$$
a_{0} P_{2}(x)+a_{1} S_{o d d}(x)
$$

(b)

$$
a_{0} S_{\text {even }}(x)+a_{1} P_{1}(x)
$$

(c)

$$
a_{0} S_{\text {even }}(x)+a_{1} P_{3}(x)
$$

(d) None of the above

Answer (a)
7. The angular momentum $(|\vec{L}|)$ of a rigid rotor with $l=2, m=1$ is equal to (a) $6 \hbar(\mathrm{~b}) 6 \hbar^{2}$ (c) $\sqrt{6} \hbar$ (d) None of the above Answer (c)
8. The value of

$$
\int_{-1}^{+1} P_{3}(x) x P_{5}(x) d x
$$

is equal to
(a) 0 (b) 6 (c) 2 (d) $\sqrt{2} / 3$

Answer (a)
9. The value of

$$
\int_{-\infty}^{+\infty} H_{4}(x) x H_{5}(x) d x
$$

is equal to
(a) 0 (b) $1920 \sqrt{\pi}$ (c) $496 \sqrt{\pi}$ (d) None of the above

Answer (d)
10. The polynomial below that solves

$$
\frac{d^{2} y}{d x^{2}}-2 x \frac{d x}{d y}+8 y=0
$$

is
(a) x (b) $x^{4}-3 x^{2}+2$ (c) $4 x^{4}-12 x^{2}+3$
(d) None of the above

Answer (c)

