Mathematics for Chemistry: Assignment 6

June 15, 2017

1. Consider the system of coupled first order equations:

$$
\begin{aligned}
\frac{\mathrm{d} x_{1}}{\mathrm{~d} t} & =3 x_{1}+2 x_{2} \\
\frac{\mathrm{~d} x_{2}}{\mathrm{~d} t} & =2 x_{1}+3 x_{2}
\end{aligned}
$$

has a general solution of the form (where A and B are arbitrary constants)
(a)

$$
A\binom{-1}{1} e^{-t}+B\binom{1}{1} e^{-5 t}
$$

(b)

$$
A\binom{1}{1} e^{-t}+B\binom{1}{1} e^{-5 t}
$$

(c)

$$
A\binom{-1}{1} e^{t}+B\binom{1}{1} e^{5 t}
$$

(d)

$$
A\binom{1}{-1} e^{3+i t}+B\binom{1}{1} e^{3-i t}
$$

Answer (c)
2. Consider the second order differential equation

$$
y^{\prime \prime}+6 y^{\prime}+9 y=0
$$

The general solution of this equation is (where A and B are arbitrary constants) (a) $A e^{3 x}+B e^{-3 x}$ (b) $A e^{4 x}+B e^{2 x}$ (c) $A e^{3 x+2 i x}+B e^{3 x-2 i x}$ (d) $A e^{-3 x}+B x e^{-3 x}$

Answer (d)
3. Consider the second order differential equation

$$
y^{\prime \prime}+4 y^{\prime}+9 y=0
$$

with the boundary conditions $y(0)=0$, and $y^{\prime}(0)=\sqrt{5}$. The particular solution of this ODE is (a) $e^{2 x} \sin (5 x)(b) e^{2 x} \cos (5 x)(\mathrm{c}) e^{-2 x} \cos (5 x)$ (d) $e^{-2 x} \sin (\sqrt{5} x)$

Answer(d)
4. The ODE

$$
y^{\prime \prime}-\frac{x \sin (x)}{\sin (x)-x \cos (x)} y^{\prime}+\frac{\sin (x)}{\sin (x)-x \cos (x)} y=0
$$

has $\sin (x)$ as one of the solutions. The other linearly independent solution is (a) x (b) $\cos (x)(\mathrm{c}) \sin (2 x)$ (d) $\sin (x)-x \cos (x)$

Answer(a)
5. The general solution of the second order nonhomogeneous equation

$$
y^{\prime \prime}+16 y=4 x^{2}
$$

is (A and B are arbitrary constants)
(a)

$$
y=A \sin (4 x)+B \cos (4 x)+\sin (4 x) \cos (4 x)
$$

(b)

$$
y=A \sin (4 x)+B \cos (4 x)+\ln \left(\frac{1+\sin (4 x)}{\cos (4 x)}\right)
$$

(c)

$$
y=A \sin (4 x)+B \cos (4 x)+\left(\frac{-1}{32}+\frac{x^{2}}{4}\right)
$$

(d) None of the above

Answer (c)
6. The second order ODE $y^{\prime \prime}+y=\sin 2 x$ has a general solution of the form (where A and B are arbitrary constants)
(a)

$$
A \sin x+B \cos x+\sin 2 x
$$

(b)

$$
A \sin x+B \cos x-\sin 2 x
$$

(c)

$$
A \sin x+B \cos x-\frac{1}{3} \sin 2 x
$$

(d)

$$
A \sin x+B \cos x+1
$$

Answer (c)
7. A forced damped harmonic oscillator satisfies the differential equation

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} x}{\mathrm{~d} t}+5 x=\sin (\omega t)
$$

The condition for resonance in this oscillator is (a) $\omega=5$ (b) $\omega=\sqrt{5}$ (c) $\omega=2$ (d) $\omega=\sqrt{2}$

Answer (b)
8. The solution of the equation

$$
x^{2} y^{\prime \prime}+14 x y^{\prime}+12 y=0
$$

is (where A and B are arbitrary constants) (a) $A x^{1} 2+B x$ (b) $A x^{-12}+B x^{-1}$ (c) $A x^{7+i}+B x^{7-i}$ (d) None of the above
9. The solution of the equation

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}+2 y=0
$$

is (where A and B are arbitrary constants)
(a) $A x^{-1}+B x$ (b) $A x^{-i}+B x^{i}$ (c) $A x^{1+i}+B x^{1-i}$ (d) None of the above

Answer (d)
10. The general solution of the differential equation

$$
y^{\prime \prime}+\frac{4 y^{\prime}}{x}+\frac{3 y}{x^{2}}=1
$$

is (where A and B are arbitrary constants)
(a)

$$
y=\frac{A}{x^{2}}+\frac{B \log (x)}{x^{2}}+\frac{x^{2}}{16}
$$

(b)

$$
y=A e^{x}+B e^{-x}+2 x+4 x^{2}-1
$$

(c)

$$
y=A x+\frac{B}{x^{2}}+\log (x)+4 x^{2}-1
$$

(d) None of the above

Answer (d)

