Mathematics for Chemistry: Assignment 4

June 15, 2017

1. Consider the set of linear equations:

$$
\begin{aligned}
a x_{1}-x_{2} & =0 \\
x_{1}+a x_{2}+x_{3} & =0 \\
x_{2}+a x_{3}+x_{4} & =0 \\
x_{3}+a x_{4} & =0
\end{aligned}
$$

The condition for a nontrivial solution of this equation to exist is
(a) $a^{4}=3 a^{2}$
(b) $a^{4}=-a^{2}+3$
(c) $a^{4}=a^{2}+1$
(d) $a^{4}=a^{2}-1$

Answer (c)
2. Consider the system of linear equations below:

$$
\begin{aligned}
3 x+2 y+z & =7 \\
4 x+y+3 z & =11 \\
x-6 y-2 z & =0 \\
4 x+21 y+10 z & =18
\end{aligned}
$$

These equations are:
(a) sufficient and consistent.
(b) not consistent.
(c) consistent but not sufficient.
(d) sufficient but not consistent.

Answer (a)
3. The determinant of the matrix

$$
\left(\begin{array}{llll}
1 & b & 0 & b \\
b & 1 & b & 0 \\
0 & b & 1 & b \\
b & 0 & b & 1
\end{array}\right)
$$

is equal to
(a) 1 (b) -1 (c) $1+2 b$ (d) $1-4 b^{2}$

Answer (d)
4. Consider the matrix:

$$
\left(\begin{array}{llll}
1 & b & 0 & b \\
b & 1 & b & 0 \\
0 & b & 1 & b \\
b & 0 & b & 1
\end{array}\right)
$$

Given that $b<0$, the largest eigenvalue is
(a) 1 (b) -1 (c) $1+2 \mathrm{~b}$ (d) $1-2 \mathrm{~b}$

Answer (d)
5. Amongst Symmetric, Hermitian and Unitary matrices, which are the ones that will always have real eigenvalues ?
(a) Symmetric and Hermitian
(b) Symmetric only
(c) Hermitian only
(d) Hermitian and Unitary

Answer (a)
6. Consider the matrix $\frac{1}{\sqrt{1+2 b^{2}}}$

$$
\left(\begin{array}{cccc}
1 & b & 0 & b \\
-b & 1 & b & 0 \\
0 & -b & 1 & b \\
-b & 0 & -b & 1
\end{array}\right)
$$

The above matrix is
(a) symmetric but not orthogonal
(b) orthogonal but not symmetric
(c) both symmetric and orthogonal
(d) neither symmetric nor orthogonal

Answer (b)
7. Consider the matrix:

$$
\left(\begin{array}{llll}
1 & b & 0 & b \\
b & 1 & b & 0 \\
0 & b & 1 & b \\
b & 0 & b & 1
\end{array}\right)
$$

The inverse of this matrix is equal to
(a)

$$
\left(\begin{array}{llll}
1 & b & 0 & b \\
b & 1 & b & 0 \\
0 & b & 1 & b \\
b & 0 & b & 1
\end{array}\right)
$$

(b)

$$
\left(\begin{array}{cccc}
1 & b & 0 & b \\
-b & 1 & b & 0 \\
0 & -b & 1 & b \\
b & 0 & -b & 1
\end{array}\right)
$$

(c) $\frac{1}{1+2 b^{2}}$

$$
\left(\begin{array}{cccc}
1 & b & 0 & b \\
-b & 1 & b & 0 \\
0 & -b & 1 & b \\
-b & 0 & -b & 1
\end{array}\right)
$$

(d) $\frac{1}{1+2 b^{2}}$

$$
\left(\begin{array}{cccc}
1 & b & 0 & b \\
1 / b & 1 & b & 0 \\
0 & 1 / b & 1 & b \\
1 / b & 0 & 1 / b & 1
\end{array}\right)
$$

Answer (c)
8. Consider the following set of equations:

$$
\begin{aligned}
4 x+3 y+z & =4 \\
x-4 y+2 z & =10 \\
3 x+7 y-z & =-5
\end{aligned}
$$

The set of equations above has
(a) no solution
(b) a unique solution
(c) multiple (but finite) number of solutions
(d) infinite number of solutions

Answer (a)
9. Consider a vector in $3 \mathrm{D}(-1,2,5)$. When this vector is rotated by 30° about the Z-axis, the resulting vector is closest to (a) $(0.87,1.23,0.5)$ (b) $(-1.87,1.23,5)$ (c) (-0.5,0.87,2.5) (d) $(3.1,1.5,2.6)$

Answer (b)
10. Consider a vector in $3 \mathrm{D}(-1,-1,-1)$. When this vector is rotated by 45° about the Z -axis, followed by 45° about the X-axis, the resulting vector is closest to (a) ($-0.71,-0.71,-1.41$) (b) ($+0.71,0.71,-$ 1.41) (c) (0,-0.29,-1.71) (d) $(0,0.29,1.71)$

Answer (c)

