Assignments for the course Computational Chemistry and Classical Molecular Dynamics (CCCMD):
 Lectures 5 to Lecture 10 Week-2

The assignments are listed lecture-wise and weekly. For example, Assignment (5.1) will be the first assignment after lecture 5 . There are a total of 41 lectures.
6.1) What are the advantages of an array variable that is declared by a dimension statement?
6.2) List two common mistakes that can occur when you use an array variable.
6.3) What are the differences between the declaration statements for a one dimensional array, a two dimensional array and a three dimensional array? Give an example each when you will need a two dimensional array and a three dimensional array.
7.1) Extend the Fibonacci number sequence to another sequence wherein, $f(1)=$ $1, f(2)=1, f(3)=2, f(4)=f(1)+f(2)+f(3)$ and $f(n)=f(n-1)+f(n-2)+f(n-3)$, for all $\mathrm{n}>4$. Calculate the first 15 numbers of this new series.
7.2) Using your own program, calculate the sum of numbers $1 / \mathrm{n}^{2}$, for n going from 1 to 100 . Extend the calculation to the sum of $1 / \mathrm{n}^{3}$.
8.1) What is the difference between a formatted statement and an unformatted statement? Illustrate with an example of your own program.
8.2) What is the significance or the use of line numbers in Fortran?
8.3) Write a program to calculate the largest and the smallest number in an array of 15 numbers. You may choose any 15 numbers of your liking.
9.1) What is the difference between a function and a subroutine?
9.2) Convert the program that you studied for solving a quadratic equation into a subroutine and obtain the solution of the quadratic equation by providing the
coefficients a, b and c of the quadratic equation to the subroutine. The subroutine should provide the roots of the equation as rootl $=($ reall, aimag1 $)$ and $\operatorname{root} 2=($ real2, aimag 2$)$.
10.1) What are the advantages of a common statement?
10.2) Write a program wherein different common statements are used to call different subroutines.

