Assignments Week-6

Assignment-1

Maximum work available from a system can be more than change in its internal energy when
(A) $\Delta \mathrm{H}>0$
(B) $\Delta \mathrm{G}=0$
(C) $\Delta \mathrm{S}>0$
(D) $\Delta \mathrm{V}>0$

Assignment 2

Electrical work obtainable from a system is given by
(A) $\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
(B) $\Delta U-p \Delta V$
(C) $\Delta \mathrm{U}-\mathrm{T} \Delta \mathrm{S}$
(D) $T \Delta S+V \Delta p$

Assignment 3

$\mathrm{dU}=\mathrm{TdS}-\mathrm{pdV}$ leads to the following Maxwell equation
(A) $\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial p}{\partial S}\right)_{V}$
(B) $\left(\frac{\partial S}{\partial V}\right)_{T}=-\left(\frac{\partial V}{\partial S}\right)_{p}$
(C) $\left(\frac{\partial T}{\partial S}\right)_{V}=-\left(\frac{\partial p}{\partial V}\right)_{S}$
(D) $\left(\frac{\partial V}{\partial T}\right)_{S}=-\left(\frac{\partial S}{\partial p}\right)_{V}$

Assignment 4

The equation $\mathrm{dU}=\mathrm{TdS}-\mathrm{pdV}$ applies to
(A) irreversible changes
(B) reversible changes
(C) both reversible and irreversible changes
(D) cyclic process only

Assignment 5

Spontaneity of a process can be predicted from the knowledge of
(A) enthalpies of formation of reactants and products
(B) free energies of formation of reactants and products
(C) entropies of reactants and products
(D) enthalpies of formation and entropies of reactants and products

Assignment 6

At constant 298 K , with increase in pressure of a perfect gas by 10 fold, the Gibbs energy per $\mathrm{mol}[\mathrm{R}$ is gas constant]
(A) decreases by $298 R \ln 100$
(B) increases by $298 R \ln 10$
(C) increases by $2980 R$
(D) decreases by 10R

Assignment 7

If a process requires a sharp change in entropy of a substance with rise in temperature, the best phase of substance to be chosen will be
(A) gaseous
(B) liquid
(C) solid
(D) liquid crystalline

Assignment 8

With increase in pressure at constant temperature, the Gibbs energy of a substance will change by maximum amount for
(A) liquid phase
(B) gas phase
(C) solid phase
(D) super cooled phase

Assignment 9

The Gibbs energy per mol of a pure substance is $10 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 298 K . The value of its chemical potential in $\mathrm{kJ} \mathrm{mol}^{-1}$ is
(A) 2980
(B) 10
(C) 29.8
(D) 2.98

Assignment 10

Up to 10 bar, with increase in pressure at a constant temperature for liquid water and ice, the Gibbs energy change is expressed by
(A) $\Delta \mathrm{G}($ ice $)=\Delta \mathrm{G}($ liquid water $)$
(B) $\Delta \mathrm{G}($ ice $)>\Delta \mathrm{G}$ (liquid water)
(C) $\Delta \mathrm{G}$ (ice) $<\Delta \mathrm{G}$ (liquid water)
(D) $\Delta \mathrm{G}($ ice $)=0 ; \Delta \mathrm{G}($ liquid water $)>0$

