Х

NPTEL

reviewer3@nptel.iitm.ac.in ▼

Courses » Semiconductor Devices and Circuits

Announcements Course Ask a Question Progress Mentor FAQ

Unit 7 - Week 6 : PN Junction

Course **Assignment 6** outline The due date for submitting this assignment has passed. As per our records you have not submitted this Due on 2018-09-12, 23:59 IST. How to access the portal assignment. Week 1: **Excursion in** Note: Use thermal voltage = 0.026 V at 300 K. Quantum Mechanics 1) While analysing the electrostatics of an ideal PN junction, we used "depletion 1 point Week 2: approximation". What does this approximation mean? **Excursion in** Solid State The term refers to an undoped region near the PN junction. **Physics** The term refers to a region near the PN junction where the electron and hole concentrations Week 3: Density are much less than the intrinsic carrier concentration. of States. Fermi The term refers to a region near the PN junction where the electron and hole concentrations **Function and** are much less than the doping densities. Doping None of the above Week 4: Recombination-No, the answer is incorrect. Generation, Score: 0 Charge Transport and **Accepted Answers:** Continuity The term refers to a region near the PN junction where the electron and hole concentrations are much le Equation than the doping densities. 2) Consider an ideal silicon PN junction at $T=300\,K$ with doping Week 5 : Metal-1 point Semiconductor densities $N_A=10^{17}\ /cc$ and $N_D=10^{15}\ /cc$. Assume intrinsic carrier **Junctions** concentration, $n_i = 10^{10} \ / cc$. Calculate the built-in potential in the junction. Week 6: PN 0.56 V Junction 0.9 V Schottky Contact: Small 0.25 V

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

G+

A project of

Signal Impedance

0.72 V

Funded by

In association with

Impedance		
PN Junction :	ce De	$43.7\mu A$
Non-idealities		
Quiz : Assignment 6		$12.5\mu A$
_		
Assignment 6Solution		22.5nA
Week 7 : Bipolar Junction		$105.5\mu A$
Transistors		No, the answer is incorrect.
Week 8 : Metal		Score: 0
Oxide		Accepted Answers:
Semiconductor Capacitor		$43.7\mu A$
(MOSCAP) and		4) Assume an ideal PN junction with the doping density in P-side is higher compared to that in ${\it 1 point}$
CV Characteristics		n-side. Which of the following comments is correct regarding the spread of the depletion region in n and p sides.
		and p sides.
Week 9: MOSFET: I		Depletion region is extended more inside p-doped region compared to n-doped region.
MOSPET. I		Depletion region is extended more inside n-doped region compared to p-doped
Week 10:		region.
MOSFET: II		Depletion region is extended equally inside n and p doped regions.
Week 11:		Depletion widths inside both n and p doped regions become zero at thermal equilibrium.
Circuits		No, the answer is incorrect.
Week 12: Thin		Score: 0
Film Transistors (TFTs), Tutorial		Accepted Answers:
Sessions		Depletion region is extended more inside n-doped region compared to p-doped region.
		5) The magnitude of the current through a practical PN junction diode, which is subjected to a 1 point
		low reverse bias, is observed to increase slowly with the increase in applied voltage in the reverse
		direction. Which one of the following is the most possible reason for this non-ideal behavior?
		Recombination of electron-hole pairs in the depletion region.
		Impact of series resistance.
		High level injection of minority carriers that surpass the background doping concentration.
		Generation of electron-hole pairs in the depletion region.
		· · · ·
		No, the answer is incorrect. Score: 0
		Accepted Answers:
		Generation of electron-hole pairs in the depletion region.
		6) Consider an ideal Si PN junction diode with $N_a=10^{18}\ cm^{-3}$ and $N_d=10^{16}\ cm^{-3}$. 1 point
		The layout area of the diode is $10^{-4}\ cm^2$. Calculate the junction capacitance (depletion capacitance)
		at $T=300K$.
		Assume $n_i=10^{10}\ cm^{-3}$ and the dielectric constant of Si $=11.8$.
		12.56 pF
		35.6 nF
		3.14 pF
		1.05 pF
		No, the answer is incorrect. Score: 0
		Score. v

Accepted Answers: 3.14 pF 7) An ideal PN junction diode is forward biased moderately such that the applied bias is much 1 point greater than the thermal voltage. How much voltage is needed to increase the diode current by a factor of 10 at $T=300\,K$? 26 mV ● 60 mV ● 85 mV 120 mV No, the answer is incorrect. Score: 0 **Accepted Answers:** 60 mV 8) Following figure shows the spatial distribution of excess minority carrier (hole) 1 point concentration on the n-side of two ideal $P^{+}N$ diodes A and B maintained at the room temperature. Δp_n N side Diode A Diode B Assume low-level injection condition prevails. The P-side doping, N-side doping, the cross-sectional area and the hole mobility are the same in both the diodes. Which of the following statements is NOT correct? Both the junctions are forward biased. Diode A has a higher applied bias. Diode A has a higher minority carrier (hole) lifetime. Diode A has a higher current. No, the answer is incorrect. Score: 0 **Accepted Answers:** Diode A has a higher minority carrier (hole) lifetime. 9) Semiconductor devices often contain "high-low" junctions for which the doping density 1 point changes magnitude, but not sign. The figure below shows such a high-low step junction.

 $0.7\,\mu m$