

3 : Density of States, Fermi Function and Doping

Course outline	Assignment 3		
	The due date for submitting this assignment has passed.		
How to access the portal	As per our records you have not submitted this assignment.	Due on 2018-09-05, 23:5	9 IST.
Week 1 : Excursion in Quantum Mechanics	1) Given an energy band diagram, how can one find the end of the formula of the formula ${\rm E}_{C}$.	electric field?	1 point
Week 2 : Excursion in Solid State Physics	It is proportional to minus E_C .		
Week 3 : Density of States, Fermi Function and Doping	It is proportional to the slope of E_C . It is proportional to the minus of the slope of E_C . No, the answer is incorrect.		
Density of States	Score: 0 Accepted Answers:		
Density of States - Continued, Fermi Function	It is proportional to the slope of E_C . 2) Consider an n-type semiconductor at $0K$ temperature level to be?	. Where do you expect the Fermi	1 point
Fermi Function, Carrier Concentration	 Inside the valence band. Inside the conduction band. 		
Doping	Near the middle of the band-gap.		
Doping - Continued	Between the donor level and the conduction ban	d.	
Quiz : Assignment 3	No, the answer is incorrect. Score: 0		
Assignment 3 Solution	Accepted Answers: Between the donor level and the conduction band.		

Semiconductor Devices and Circuits - - Unit 4 -...

Week 5 : Metal- Semiconductor Junctions	Ce De 0.2 eV 0.56 eV
Week 6 : PN Junction	● 0.16 eV ● 0.92 eV
Week 7 : Bipolar Junction Transistors	No, the answer is incorrect. Score: 0 Accepted Answers:
Week 8 : Metal Oxide Semiconductor Capacitor (MOSCAP) and CV Characteristics	0.92 eV 4) As temperature increases from 0K to high temperature, the carrier concentration goes 1 point through three regions. In what order does the transition occur? Intrinsic, extrinsic, freezeout Freezeout, extrinsic, intrinsic,
Week 9: MOSFET: I	 Freezeout, intrinsic, extrinsic Intrinsic, freezeout, extrinsic
Week 10: MOSFET: II	No, the answer is incorrect. Score: 0
Week 11: Circuits	Accepted Answers: Freezeout, extrinsic, intrinsic,
Week 12: Thin Film Transistors (TFTs), Tutorial Sessions	5) An intrinsic germanium wafer is doped with a shallow acceptor density of $3n_i/2$, 1 point where n_i is the intrinsic carrier concentration. At temperature T, all the acceptors are ionized. Calculate the hole density at temperature T.
	 3n_i/2 n_i/2 n_i/2 n_i No, the answer is incorrect. Score: 0 Accepted Answers: 2n_i 6) Under which condition the position of the Fermi level in an intrinsic bulk semiconductor lies 1 point exactly at the middle of the band-gap at a non-zero temperature T? When effective mass of electrons = effective mass of holes. When mobility of electrons > mobility of holes When the energy band-gap > 2kT Fermi level of an intrinsic semiconductor will always lie at the middle of the band-gap. No, the answer is incorrect. Score: 0 Accepted Answers: When effective mass of electrons = effective mass of holes. 7) Assume two semiconductors A and B have the same effective density of states both at the 1 point conduction band edge (N_C) and the valence band edge (N_V). The intrinsic carrier concentration of A

and B at 300K are respectively $1.5e10\,cm^{-3}$ and $3.2e7\,cm^{-3}$. What is the band-gap of semiconductor B if the semiconductor A has a band-gap of $1.12\,eV$?

1.12 eV
 1.44 eV
 1.92 eV
 0.74 eV

Score: 0 Accepted Answers:

1.44 eV

8) The probability of a state being filled by an electron at energy $E_C - kT$ is equal to the **1** point probability of a state being filled by a hole at energy $E_C - 3kT$. Where is the Fermi level located?

3kT above the valence band edge. *3kT* below the valence band edge. *2kT* above the conduction band edge. *2kT* below the conduction band edge. *2kT* below the conduction band edge. *Accepted Answers:*

2kT below the conduction band edge.

⁹⁾ A silicon wafer is doped with $10^{16} \ cm^{-3}$ arsenic atoms. The donor level E_d is located **1** point at 54 meV below E_C . What percentage of the donor atoms are ionized at $T = 77 \ K$? [Assume, $N_C(T = 77K) = 4.2 \times 10^{18} \ cm^{-3}$ and the degeneracy factor of donor level, $g_D = 2$]

```
100 %
65.5 %
22.3 %
10.9 %
No, the answer is incorrect.
Score: 0
```

Accepted Answers: 22.3 %

10For a certain semiconductor, the densities of states in the conduction and valence bands **1** point are $g_C(E) = A(E - E_C)$ and $g_V(E) = B(E_V - E)$ respectively, where A and B are two non-zero constants. Assume Boltzmann distribution for both types of carrier. Consider the reference potential energy level at the valence band edge, i.e. $E_V = 0$. E_C is the energy at the conduction band edge. If A = 2B, compute the intrinsic Fermi energy at 300 K.

$$E_C/2 - 9 \, meV$$

 $E_C/2 + 9 \, meV$
 $E_C - 26 \, meV$

Semiconductor Devices and Circuits - - Unit 4 -...

$igsquare$ $E_C+26meV$
No, the answer is incorrect. Score: 0
Accepted Answers: $E_C/2-9meV$

Previous Page

End