Courses »Semiconductor Devices and Circuits
Announcements Course Ask a Question Progress Mentor FAQ

Unit 2 - Week

1 : Excursion in Quantum Mechanics

Course outline

How to access the portal

Week 1 :
Excursion in
Quantum
Mechanics

- Quantum Mechanics: Concept of Wave Particle, Schrodinger's Equation
- Quantum Mechanics: Particle in a Box

Quantum Mechanics: Particle in a Box Continued, Harmonic Oscillator Quiz : Assignment 1

Assignment 1 solution

Week 2 :
Excursion in Solid State Physics

Week 3 : Density

Assignment 1

The due date for submitting this assignment has passed.
As per our records you have not submitted this
Due on 2018-08-15, 23:59 IST. assignment.

1) The wave-function of a particle must be "normalizable", because
1 pointthe particle's momentum must be conserved.the particle's charge must be conserved.the particle must exist somewhere in the space.
the particle can not exist at two places at the same time.

No, the answer is incorrect.
Score: 0
Accepted Answers:
the particle must exist somewhere in the space.
2) Which of the following is not a valid quantum mechanical wave-function?

1 point

(i)

(ii)

(iii)

(iv)(i)

0 (ii)
(ii)
(iii)
(iv)

No, the answer is incorrect.
© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -

National Programme on Technology Enhanced Learning

NASSCOM ${ }^{\circ}$
Funded by

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\sqrt{30} L^{-5 / 2}
$$

7) An electron is bound in an infinite one-dimensional potential well of width 7.3 nm along $\mathbf{1}$ point the x-axis. The system is at state $n=2$. The probability of finding the electron per nm length at $x=0.3 \mathrm{~nm}$ is closest to

No, the answer is incorrect.
Score: 0
Accepted Answers:
0.018
8) Electrons are accelerated through an electric potential V and then fall on a pair of slits that 1 point have a separation of 100 nm . The resultant interference pattern indicates that the electrons have a wavelength of 1 nm .
i) What is the value of the accelerating electric potential V?
ii) After passing though the slits what is the minimum spread in the electron's momentum in the direction parallel to the plane of the slits and perpendicular to the average path of the electrons? Assume $h=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}$ and electron mass $m=9.11 \times 10^{-31} \mathrm{~kg}$. Ignore any relativistic effect.

ii) infinity
i) 1 V
ii) zero
i) 1.5 V
ii) $3.87 \mathrm{e}-25 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$
i) 1.5 V
ii) $5.27 \mathrm{e}-28 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$

No, the answer is incorrect.
Score: 0
Accepted Answers:
i) 1.5 V
ii) $5.27 \mathrm{e}-28 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$
9) The wave-function of a particle at a state ' n ' is given by

1 point
$\psi(x)=\left\{\begin{array}{l}(\sqrt{2 / a}) \cos (3 \pi x / a), \text { for }|x| \leq a / 2 \\ 0, \text { for }|x|>a / 2\end{array}\right.$.
What is the average momentum of the particle at the state ' n '.zero
$\hbar \pi / a$
$3 \hbar \pi / a$None of the above.
No, the answer is incorrect.
Score: 0
Accepted Answers:
zero
10Consider a particle of mass m moving in the one-dimensional
1 point
potential $V(x)=A \delta(x)$ for $|x|<a$ and $V(x)=\infty$ elsewhere. The value of A for which the ground state energy of the system vanishes is

0

No, the answer is incorrect.
Score: 0
Accepted Answers:
$-\frac{\hbar^{2}}{m a}$

Previous Page

