

Week 9:	Rate of increase = (inflow - outflow) + generation - recombination
MOSFET: I	No, the answer is incorrect.
Week 10:	Score: 0
MOSFET: II	Accepted Answers:
Week 11: Circuits	Rate of increase = (inflow - outflow) + generation - recombination 4) Assume an undoped GaAs sample with the following properties of electrons: 1 point
Week 12: Thin Film Transistors (TFTs), Tutorial Sessions	Mobility, $\mu_n = 8.8 \times 10^6 \ cm^2/V \cdot s$. Effective mass, $m_n^* = 0.067 m_0$, where, $m_0 = 9.1 \times 10^{-31} \ kg$. Average velocity, $v_{avg} = 10^7 \ cm/s$. Calculate the mean free path of the electron.
 Introduction: Amorphous Semiconductors 	33.5 nm
Thin Film Transistors	 96.7 nm 134.8 nm
Tutorial Session - 1	O.56 um
Tutorial Session - 2	No, the answer is incorrect. Score: 0
Tutorial Session - 3	Accepted Answers: 33.5 nm
Quiz : Assignment 12	5) Which of the following statements is NOT true about the reverse bias breakdown due to 1 point impact ionization and Zener tunneling?
Assignment 12: Solution	Zener tunneling breakdown generally occurs at lower voltages than impact ionization.
	Zener tunneling generally has a stronger temperature dependence than impact ionization.
	Significant Zener tunneling only occurs when the junction is heavily doped.
	All of the above.
	No, the answer is incorrect. Score: 0
	Accepted Answers:
	Zener tunneling generally has a stronger temperature dependence than impact ionization.
	6) For a pnp-BJT, which of the following expressions represents the Emitter Injection 1 point Efficiency ?
	$ \begin{array}{c} I_{nE}\\ \overline{I_{pE}+I_{nE}}\\ \overline{I_{pE}+I_{nE}}\\ \overline{I_{pE}+I_{nE}}\\ \overline{I_{pE}}\\ \overline{I_{pE}}\\ \overline{I_{pE}}\\ \overline{I_{pE}}\\ \overline{I_{pE}}\\ \overline{I_{pE}}\\ \overline{I_{pE}}\\ \overline{I_{pE}}\\ \overline{I_{pE}}\\ \overline{I_{pE}+I_{nE}}\\ \end{array} $ No, the answer is incorrect. Score: 0

7) Which of the following is not a desired characteristic of a good voltage amplifier ? 1 point High Input Impedance High Output Impedance High Voltage Gain High Operating Bandwidth No, the answer is incorrect. Score: 0 **Accepted Answers:** High Output Impedance 8) Which of the following conditions represents the pinch-off point for a MOSFET ? 1 point \bigcirc $V_{DS} = V_T$ \bigcirc $V_{DS} = V_{GS}$ \bigcirc $V_{DS} = V_{GS} + V_T$ $V_{DS} = V_{GS} - V_T$ No, the answer is incorrect. Score: 0 **Accepted Answers:** $V_{DS} = V_{GS} - V_T$ 9) Which of the following statements is false ? 1 point For a common-source amplifier with resistive load, voltage-gain can be made high by increasing the channel width of the MOSFET used. For a common-source amplifier with resistive load, voltage-gain can be made high by decreasing the channel length of the MOSFET used. \bigcirc For a BJT to be biased in active mode, Base-Emitter junction is forward biased and Base-Collector Junction is reverse biased A MOSFET used as a switch, is generally biased in saturation mode of operation No. the answer is incorrect. Score: 0 **Accepted Answers:** A MOSFET used as a switch, is generally biased in saturation mode of operation 10)Which of the following statements are true ? 1 point i. Presence of interface trap charges does not affect the subthreshold swing of a MOSFET device ii. Channel length modulation has impact on the slope of output characteristics of a MOSFET iii. Presence of gate-drain overlap gives rise to additional parasitic capacitance in a MOSFET device

iv. In the absence of channel length modulation effects, the saturation drain current in a MOSFET is independent of the applied drain-to-source voltage

🔘 ii, iii	
🔘 iii only	
🔍 i, ii	
🔘 ii, iii, iv	
No, the answer is incorrect.	
Score: 0	
Accepted Answers:	
ii, iii, iv	

Previous Page

End