

Funded by

threshold voltage is 1V. The device is biased with a gate-to-source voltage of 3V and a drain-to-source Week 9: ce De voltage of 5V. Assume that the mobility is 300 cmsg/Vs. The MOSFET is biased in which region of MOSFET: I operation ? MOSFET: Introduction Linear MOSFET: I-V Sub-threshold Characteristics Saturation MOSFET: I-V Characteristics None of the above - Contd No, the answer is incorrect. MOSFET: I-V Score: 0 Characteristics **Accepted Answers:** - Contd. Saturation Subthreshold Swing, 4) For the n-MOSFET given in question (3), calculate the value of transconductance. 1 point Additional Concepts 4.14 mS Quiz : 1.035 mS Assignment 9 2.07 mS Assignment 9: Solution 8.28 mS Week 10: MOSFET: II No. the answer is incorrect. Week 11: Score: 0 Circuits **Accepted Answers:** Week 12: Thin 1.035 mS **Film Transistors** 5) Consider an ideal n-channel MOSFET with channel length 1.25 um. The mobility of 1 point (TFTs), Tutorial Sessions electrons is $650 cm^2/Vs$ and the threshold voltage is 0.65 V. Design the channel width of the MOSFET such that the saturation drain current is 4 mA for an applied gate-to-source voltage of 5 V. Take oxide capacitance to be 69 nF/cmsg. 🔍 11.8 um 65.8 um 125 um 🔍 40 um No, the answer is incorrect. Score: 0 **Accepted Answers:** 11.8 um 6) The threshold voltage for a MOSFET at 300K is 350 mV with a reduction of 1mV/K. 0 points Assume that the mobility changes with temperature (in K) as : $\mu(T)=\mu(300K)st(300K/T)^2$ Assuming perfect velocity saturation, the gate voltage, at which the saturation currents at 300K and 400K are equal, is . (Make an assumption that the saturation velocity remains independent of temperature). 🔍 200 mV 695 mV 478 mV 312 mV No, the answer is incorrect. Score: 0

Accepted Answers: 478 mV
7) Consider a MOS structure with a p-type semiconductor substrate doped 1 point to $N_A = 10^{16} cm^{-3}$, with thickness of SiO2 insulator as 50 nm. Let the equivalent oxide surface charge density be 16 nC/cmsq. The metal-semiconductor work-function difference is - 0.8 V. Calculate the value of flat-band voltage.
- 1.03 V
- 1.43 V
• - 0.8 V
1.43 V
No, the answer is incorrect. Score: 0
Accepted Answers:
- 1.03 V
8) For a MOSFET in the sub-threshold region of operation, the log- I_{DS} vs V_{GS} plot is a/an: 1 point
Quadratic curve
Exponential curve
Straight line
None of the above
No, the answer is incorrect. Score: 0
Accepted Answers: Straight line
9) Which of the following statements is/are true with regards to Channel Length Modulation in 1 point a MOSFET device ?
 i. It is similar to Base width modulation in BJTs ii. The pinch-off point relocates with respect to applied drain voltage iii. Drain voltage influences the current-voltage charcteristics of a MOSFET in saturation
● i
🔘 ііі
i and ii
i, ii and iii
No, the answer is incorrect. Score: 0
Accepted Answers: i, ii and iii
10)The subthreshold swing of an enhancement mode MOSFET:0 points
increases as the depletion capacitance per unit area decreases
increases as the depletion capacitance per unit area increases
is typically lesser than 59mV/dec at 300K
is typically greater than 59mV/dec at 300K

No, the answer is incorrect. Score: 0 Accepted Answers: is typically greater than 59mV/dec at 300K

Previous Page

End