

Semiconductor Junctions	$10^{-6}F$
Week 6 : PN Junction	$10^{-9}F$
Week 7 : Bipolar Junction Transistors	$10^6 F$ No, the answer is incorrect.
Week 8 : Metal Oxide Semiconductor Capacitor (MOSCAP) and CV Characteristics Week 9: MOSFET: I Week 10:	Score: 0 Accepted Answers: 10 ⁻⁶ F 4) Which of the following statement(s) is(are) correct? 1 point Resistor can store charge. Capacitor "blocks" DC and "allows" AC. Capacitor "allows" DC and "blocks" AC. An ideal capacitor can store charge for an infinite amount of time.
MOSFET: II Week 11: Circuits	No, the answer is incorrect. Score: 0 Accepted Answers:
Week 12: Thin Film Transistors (TFTs), Tutorial Sessions	Capacitor "blocks" DC and "allows" AC. An ideal capacitor can store charge for an infinite amount of time. 5) In an RC series circuit, shown below, the switch is closed at $t = 0$. Assuming the switch is 1 point ideal and the capacitor does not have any initial charge, the variation of the voltage across the capacitor is described by
	$t = 0$ R v_{c} $V_{0} + \frac{1}{\sqrt{1 + \frac{1}{2}}} C$ $v_{c}(t) = const = 0$ $v_{c}(t) = const = V_{0}$ $v_{c}(t) = V_{0}(1 - exp(-t/RC))$ $v_{c}(t) = V_{0}exp(-t/RC)$ No, the answer is incorrect. Score: 0 Accepted Answers: $v_{c}(t) = V_{0}(1 - exp(-t/RC))$ 6) Classify the following differential equation: $e^{x} \frac{dy}{dx} + 5y = x^{3}y$ Linear but not separable Linear but not separable
	 Separable but not linear Neither separable nor linear Both separable and linear

No, the answer is incorrect. Score: 0 **Accepted Answers:** Both separable and linear 7) Let us consider the following differential equation: 1 point $rac{d^2y}{dx^2}=e^y$ How will you express $\left(\frac{dy}{dx}\right)^2$ in terms of the dependent variable y? $\left(rac{dy}{dx}
ight)^2 = 2e^y + constant$ $\left(rac{dy}{dx}
ight)^2=e^y+constant$ $\left(rac{dy}{dx}
ight)^2=e^{2y}+constant$ $\left(\frac{dy}{dx}\right)^2 = constant$ No, the answer is incorrect. Score: 0 **Accepted Answers:** $\left(rac{dy}{dx}
ight)^2 = 2e^y + constant$ 8) Let us consider the following differential equation: 1 point $rac{d^3y}{dx^3} - x \, rac{dy}{dx} + (1-x)y = siny$ How many number of boundary conditions required to get a unique solution of the above differential equation? 01 0 2 3 Ο ο No, the answer is incorrect. Score: 0 **Accepted Answers:** 3 9) The slope of a function y = f(x) at a point (x, y) is given by 1 point \bigcirc y = f(x) \bigcirc $\frac{dy}{dx}$ $\frac{d^2y}{dx^2}$ \bigcirc

$\left(rac{dy}{dx} ight)^2$
No, the answer is incorrect. Score: 0
Accepted Answers: $\frac{dy}{dx}$
10) Let us consider two points A and B on an arbitrary curve $y=f(x)$. The magnitude of 1 point
double derivative $\left(rac{d^2y}{dx^2} ight)$ is higher at point A. The tangent to the curve at both the points are equal.
What we can conclude about the radius of curvature at point A and B?
 Radius of curvature at A and B are equal. Radius of curvature at A is higher than that at B. Radius of curvature at A is lower than that at B.
Not enough information
No, the answer is incorrect. Score: 0
Accepted Answers:
Radius of curvature at A is lower than that at B.

Previous Page

End