
ourses » Introduction to T	ime-Frequency Analysis and Wavelet Transforms Announcements Course Ask a Question	Progress
	3: Duration and Bandwidth	Tiogread
Course outline	Week 3 Assignment	
Registration for MATLAB Exam	The due date for submitting this assignment has passed.Due on 2016-08-15As per our records you have not submitted this assignment.	
How to access the portal	1)	1 pc
MATLAB Online Access	1. Select the correct statement(s) with reference to the given signals:	1
MATLAB Tutorials created by MathWorks	$\begin{cases} \sin\left(0.2\pi k\right) & \forall k \in \{0, 1\} \end{cases} $	
Week 1: Introduction, Basic definitions and Concepts	$x_1[k] = \begin{cases} \sin(0.2\pi k) & \forall k \in \{0, 1, \dots, 59\} \\ \sin(0.3\pi k) & \forall k \in \{60, 61, \dots, 119\} \end{cases}$	
Week 2: Fourier transforms (a review)	$\int \sin\left(0.3\pi k\right) \forall k \in \{0, 1, \dots, 59\}$	
Week 3: Duration and Bandwidth	$x_2[k] = \begin{cases} \sin(0.3\pi k) & \forall k \in \{0, 1, \dots, 59\} \\ \sin(0.2\pi k) & \forall k \in \{60, 61, \dots, 119\} \end{cases}$	
 Lecture 4.1: Duration and Bandwidth 	a. Both the signals are stationary.	
Lecture 4.2: Bandwidth equation and Instantaneous frequency	b. $x_1[k] + x_2[k]$ is a stationary signal. c. The spectra of both the signals are identical.	
 Lecture 4.3: Instantaneous frequency and analytic signals Lecture 4.4: Duration- 	 d. The spectra of both the signals are completely different. a b c d 	
Bandwidth Principle Lecture 4.5A: Requirements of time- frequency analysis techniques - Part 1 	No, the answer is incorrect. Score: 0 Accepted Answers:	
Lecture 4.5B: Requirements of time- frequency analysis techniques - Part 2	b c 2)	1 p
O Data file:	2. Fourier transform is well suited to analyze	
a3_sigData.mat Solutions to Week 3	a. Linear chirps b. Quadratic chirps	
Assignment Quiz : Week 3	c. Both linear and quadratic chirps	
Assignment Week 4: Short-time Fourier transform	d. None of the above	
Week 5: Wigner-Ville Distributions	● b ● c	
Week 6: Wigner-Ville Distributions (Contd)	 □ d No, the answer is incorrect. Score: 0 	
Week 7: Continuous Wavelet Transforms	Accepted Answers:	
Week 8: Continuous Wavelet Transforms (Contd)		
Weels & Discourt		

Week 9: Discrete Wavelet Transforms

21/07/2020

Introduction to Time-Frequency Analysis and Wavelet Transforms - - Unit 8 - Week 3: Duration and Bandwidth

Introduction to Time-Frequency Analysis and Wavelet Transforms - - Unit 8 - Week 3: Duration and Bandwidth

Questions **7** to **11** are based on the following signal (Answers for these questions have t reported as an **integer**):

 $x(t) = \left(\frac{2}{\pi}\right)^{\frac{1}{4}} e^{-t^2 + jt^2 + jt}$

f V In 8 7. Suppose the duration of the given signal is denoted by σ_t . The value of $6\sigma_t$ is No, the answer is incorrect. Score: 0 **Accepted Answers:** (Type: String) 3 8) 8. Suppose the bandwidth of the given signal is denoted by σ_{ω} . The value of σ_{ω}^2 is _ No, the answer is incorrect. Score: 0 **Accepted Answers:** (Type: String) 2 1 point 9) 9. The instantaneous frequency of the signal is t + 1 rad/sec. No, the answer is incorrect. Score: 0 Accepted Answers: (Type: String) 2 1 point 10) The value of $\frac{B_{AM}}{B_{FM}}$ for the given signal is 10. No, the answer is incorrect. Score: 0 Accepted Answers: (Type: String) 1 1 point 11) 11. If covariance of the signal is denoted by $\sigma_{t\omega}$, the value of $10\sigma_{t\omega}$ is No, the answer is incorrect. Score: 0 Accepted Answers: (Type: String) 5 1 point 12) Questions 12 to 15 requires usage of the Time-Frequency Toolbox (tftb) in MATLAB. A is provided in the data file a3_sigData.mat. The time stamps of the signal are given vector (0:1:127). (Round off the answers to these questions to **one decimal** place.)

12. The mean time for the given signal is

No, the answer is incorrect. Score: 0 Introd

Accepted Answers: (Type: String) 50.0 (Type: String) 50	Iransforms Unit 8 - Week 3: Duration and Bandwidtl	
	1 po	int
	• • • • • • •	
13. The center frequency for the given	n signal is rad/sec.	
		f
No, the answer is incorrect. Score: 0		Y
Accepted Answers: (Type: String) 0.9		
	1 p	in
14)		Ш
14. The bandwidth (σ_{ω}) for the given	signal is	g+
No, the answer is incorrect. Score: 0		
Accepted Answers:		
(Type: String) 0.1		
	1 po	int
15) 15. The minimum value of instantance	ous frequency observed for the given signal is	
rad/sec.	ous frequency observed for the given signal is	
,		
No, the answer is incorrect.		
Score: 0		
Accepted Answers: (Type: String) 0.3		
(Type. Sunny) 0.5	1 po	int
	1,00	
Previous Page	End	
T Tevious T age	End	

