## Problem Set for Module - 06

Dr. Niket S. Kaisare<br>Department of Chemical Engineering, Indian Institute of Technology Madras

## Problem 1: Method of Undetermined Coefficients for three-point backward differences

Use the method of undetermined coefficients to find the following numerical derivatives:

$$
\begin{array}{r}
f^{\prime}\left(x_{i}\right)=a_{1} x_{i-2}+a_{2} x_{i-1}+a_{3} x_{i} \\
f^{\prime \prime}\left(x_{i}\right)=a_{1} x_{i-2}+a_{2} x_{i-1}+a_{3} x_{i}
\end{array}
$$

## Problem 2: Optimal $\Delta x$ for Numerical Derivatives

Determine the optimal step size to compute the above two numerical derivatives such that the total error is minimized. Assume double precision machine $\left(\epsilon_{t o l}=2 \times 10^{-16}\right)$.

## Problem 3: Numerical Example

Use the three point formulae derived above to compute numerical derivatives $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ for:

$$
f(x)=x e^{-\frac{1}{x}}
$$

at $x=1$. Use $h=0.1$.
Repeat for a range of $h$ values from $10^{-1}$ to $10^{-10}$. Compare with the true value of the derivatives and verify the results of the previous problem.

## Problem 4: Numerical Example (continued)

Repeat the previous problem using central difference and two-point forward difference (only $f^{\prime}(x)$ ).

## Problem 5: Differentiation with Unequal Intervals



In this problem, we derive the central difference formula for unequal segments. Consider three points,

$$
x_{i-1}=x_{i}-k, \quad x_{i}, \quad x_{i+1}=x_{i}+h
$$

which we will use to obtain $f^{\prime}\left(x_{i}\right)$.

1. One possible approximation is

$$
f^{\prime}\left(x_{i}\right)=\frac{x_{i+1}-x_{i-1}}{k+h}
$$

Find how the truncation error varies with $k$ and $h$.
2. Use the Taylor's series expansion to derive a second-order accurate numerical approximation.

Specifically, the error may be proportional to $(k \pm h)^{2}$.

## Problem 6: Numerical differentiation

The following data was generated for $f(x)=x^{2} \ln (x)$. Obtain $\left[f^{\prime}(x)\right]_{x=1}$ and compare with the true value (algebraically differentiate $f(x)$ and obtain the value)

| $x$ | 0.9 | 1 | 1.1 | 1.2 |
| :---: | ---: | ---: | ---: | ---: |
| $f(x)$ | -0.0853 | 0 | 0.1153 | 0.2625 |

1. Use the forward difference method with the above data.
2. Use the central difference method with the above data.
3. Fit a Newton's Forward/Divided difference polynomial and differentiate it. Compare the results.

## Problem 7: Numerical differentiation with error in data

Let us repeat the procedure if the data is generated in a similar manner as the previous problem, but with some noise added to it. Repeat the following for the data below.

| $x$ | 0.9 | 1 | 1.1 | 1.2 |
| :---: | ---: | ---: | ---: | ---: |
| $f(x)$ | -0.054 | -0.04 | 0.112 | 0.31 |

1. Use the central difference method as before. Compare these results to the previous problem.
2. Fit a Newton's Forward/Divided difference polynomial and differentiate it. Contrast these results with what you observed in the previous problem.

## Problem 8: Simpson's $3 / 8^{\text {th }}$ Rule

Complete the derivation of the Simpson's $3 / 8^{\text {th }}$ rule, starting from Newton's polynomial.
Show that this approximation has the same order of error as the $1 / 3^{\mathrm{rd}}$ rule.

## Problem 9: Method of Undetermined Coefficients - $1 / 3^{\text {rd }}$ Rule

Derive the Simpson's $1 / 3^{\text {rd }}$ rule using method of undetermined coefficients. Start by expressing

$$
\int_{x_{1}}^{x_{3}} f(x) d x=c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}
$$

and use the procedure shown in the videos for $f(x)=1, x, x^{2}$.
Problem 10: Method of Undetermined Coefficients - $3 / \mathbf{8}^{\text {th }}$ Rule
Derive the Simpson's $3 / 8^{\text {th }}$ rule as $I=c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{4} x_{4}$.

## Problem 11: Limits of Integration

Convert through appropriate change of variables:

$$
\int_{a}^{b} f(x) d x \rightarrow \int_{-1}^{1} f(\tau) d \tau
$$

Problem 12: Indefinite Integral

$$
I=\int_{a}^{\infty} f(x) d x
$$

cannot be solved using numerical integration because one of the limits is $\infty$ (which will require infinite or a very large number of intervals in a numerical integration scheme). The above integral can be converted into an alternate form with finite limits of integral through an appropriate transformation of variables. An example is $\tau=1 / x$.

1. Use an appropriate transformation to convert the above into a numerically tractable method.
2. How will you modify the procedure for:

$$
\int_{0}^{\infty} f(x) d x
$$

3. How will you modify the procedure for

$$
\int_{-\infty}^{\infty} f(x) d x
$$

## Problem 13: Numerical Comparison

Find the following integral using (i) Trapezoidal rule; (ii) Simpson's $1 / 3^{\text {rd }}$ Rule; (iii) Simpson's $3 / 8^{\text {th }}$ Rule; (iv) Gauss Quadrature. Use six equally spaced intervals for the first three methods.

$$
\int_{0}^{6} x^{2} e^{x} \mathrm{~d} x
$$

Compare with the true value of the integral. Comment on accuracy of the various methods.

## Problem 14: Richardson's Extrapolation

Re-solve the above example using a single application of the Simpson's $1 / 3^{\text {rd }}$ rule.
Apply Richardson's extrapolation to the solution just obtained. Compare with the true value.

## Problem 15: Some Special Integrals

Two important integrals in engineering are those of the error function and sinc function. Obtain the following using the Trapezoidal rule. Reduce the interval $h$ so that the result is accurate to $\epsilon<10^{-4}$. (Hint: Start with some value of the step-size $h$. Half the step size each time, so that further reduction in the step size does not change the integral by more than the tolerance value).

$$
\begin{aligned}
& I_{e r f}=\frac{2}{\sqrt{\pi}} \int_{0}^{2} e^{-x^{2}} \mathrm{~d} x \\
& I_{\text {sinc }}=\int_{0}^{4 \pi} \frac{\sin (x)}{x} \mathrm{~d} x
\end{aligned}
$$

Problem 16: Double Integral using Gauss Quadrature

$$
I=\int_{-1}^{1} \int_{-1}^{1} x^{2} \sin (y) \mathrm{d} x \mathrm{~d} y
$$

