Problem Sheet 04

Problem 1: Bisection Method

(Problem 4.17 of the Textbook) The saturation concentration of dissolved oxygen in freshwater can be calculated with the equation:

$$
\ln \left(\mathrm{O}_{s}\right)=-139.34411+\frac{1.575701 \times 10^{5}}{T}-\frac{6.642308 \times 10^{7}}{T^{2}}+\frac{1.243800 \times 10^{10}}{T^{3}}-\frac{8.621949 \times 10^{11}}{T^{4}}
$$

In the above equation, T is the temperature in Kelvins and O_{s} is the saturation oxygen concentration. The typical saturation concentrations ranges from $14.621 \mathrm{mg} / \mathrm{L}$ at $0^{\circ} \mathrm{C}$ to 6.413 mg / L at $40^{\circ} \mathrm{C}$. The objective is to find the temperature of freshwater for the following cases: $\mathrm{O}_{\mathrm{s}}=8.0,10.0$ and $12.0 \mathrm{mg} / \mathrm{L}$.

- If the initial guesses for the bisection method are 0 and $40^{\circ} \mathrm{C}$, how many iterations will be required to determine the temperature with an accuracy of 0.05 degrees?
- Find the roots for the three O_{s} values with an accuracy of 0.05 degrees. Verify that the number of iterations required is as determined above.

Problem 2: "Open" Methods

Starting with initial guess of 273 K , use any of the open methods (non-bracketing methods) of your choice, discussed in the class, to solve the above problem.

Problem 3: Using Peng-Robinson Equation of State

The Peng-Robinson equation of state is given by:

$$
P=\frac{R T}{V-b}-\frac{a}{V(V+b)+b(V-b)}
$$

Where, $a=0.364$ and $b=3 \times 10^{-5}$ for propane (in SI units). Compute the volume occupied by propane at 340 K temperature and 100 bar pressure using Fixed Point Iteration as follows:

- Multiply the equation by $(V-b)$ and rearrange to express $V=g(T, P, V)$.
- Use the ideal gas law to get the initial guess of V.
- Use the above expression, $g(T, P, V)$ to get new value of V from the current guess. Keep iterating this until the volume obtained from the new guess is within the error tolerance of $\varepsilon_{\mathrm{tol}}=10^{-4}$. In other words, iterate $V^{i+1}=g\left(T, P, V^{i}\right)$ until $\left|\frac{V^{i+1}-V^{i}}{V^{i}}\right| \leq \varepsilon_{\mathrm{tol}}$.
For more info on Equations of State, please visit http://www.ceb.cam.ac.uk/thermo/pure.html

Problem 4: Redlich-Kwong Equation of State

The Redlich-Kwong equation of state is given by:

$$
P=\frac{R T}{V-b}-\frac{\frac{a}{\sqrt{T}}}{V(V+b)}
$$

Where, $a=6.46$ and $b=2.97 \times 10^{-5}$ for propane (in SI units). Compute the volume occupied by propane at 340 K temperature and 100 bar pressure using the same procedure as Problem 3.

Problem 5: Bracketing Method

Rearrange the Peng-Robinson EOS of Problem 3 in the form $f(V ; T, P)=0$. One initial guess for V is obtained using ideal gas law (as was done in Problem 1). Compute $f(V)$ for this choice of V. Choose another initial guess such that the value $f(V)$ has opposite sign at this value of V. These two form initial guesses $V^{(1)}$ and $V^{(2)}$ for a bracketing method (Bisection or Regula Falsi). Use either of these methods to obtain the true volume of gas from P-R method.

Problem 6: Secant Method

Repeat Problem 5 using Secant method.

Problem 7: Friction Factor for Turbulent Flow

The friction factor f depends on the Reynolds number for turbulent flow in a smooth pipe according to the following relationship:

$$
\frac{1}{\sqrt{f}}=-0.4+\sqrt{3} \ln (\operatorname{Re} \sqrt{f})
$$

The above equation may be rearranged to be written in the standard forms:

$$
f=G(f) \text { or } F(f)=0
$$

With $f^{\text {initial }}=0.01$, find the friction factor for $\operatorname{Re}=10^{5}$ as follows:

1. Use the fixed point iteration
2. Use Newton-Raphson method

Problem 8: Temperature of a reactor

The energy balance equation for a reactor results in the following equation:

$$
\begin{equation*}
T-T_{\min }=\phi\left(T_{\max }-T\right) \exp \left(\delta \frac{T-1}{T}\right) \tag{1}
\end{equation*}
$$

In the above expression, $T_{\min } \leq T \leq T_{\max }$ is the dimensionless temperature. In the above equation,

$$
T_{\min }=\frac{1+\gamma T_{a}}{1+\gamma} \text { and } T_{\max }=\frac{1+\beta+\gamma T_{a}}{1+\gamma}
$$

It is known that the temperature value lies between the two extremes given above. The parameter values for this example are:

$$
\beta=0.4 ; \delta=30 ; T_{a}=1.0 ; \gamma=0.5 ; \phi=0.2
$$

- Use any method of your choice to find the Temperature that satisfies Equation (1).

Problem 9: Square root; Héron Algorithm and Newton Raphson

- Show that Newton-Raphson's method can be used to obtain the recursive equation of Héron's Algorithm (covered in video lecture of Module 2) for obtaining the square root of 2 as: $x^{(i+1)}=\frac{1}{2}\left(x^{(i)}+\frac{2}{x^{(i)}}\right)$.
- Generalize the method to obtain $\sqrt[n]{c}$, where n is an integer
- Hence obtain the value of $3^{1 / 3}$ accurate to three decimal places, starting with initial guess 1.0

