Due on 2021-09-01, 23:59 IST.

NPTEL » Material & Energy Balance Computations

2 points

Course outline How does an NPTEL online course work? Week 0 Week 1 The reaction between ethylene and hydrogen bromide to form ethylene bromide is carried out in a Week 2 Week 3 Week 4 Week 5 Lecture 21 : Multiple reactions & reactive process balance Lecture 22 : Reactive process balance Lecture 23 : Multiple reactions

& reactive process balance

Lecture 24 : Reactive process

Lecture 25 : Reactive process

Quiz: Week 5 : Assignment

balance (contd.)

balance (contd.)

Week 5 Lecture Material

Week 5 Feedback Form

Week 6

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12

Download Videos

Detailed Assignment Solution

Live Interactive session

(d)

Score: 0

b)

No, the answer is incorrect.

Accepted Answers:

Accepted Answers:

(a)

(a)

(b)

(c)

(d)

Score: 0

butene:

Score: 0

c)

7)

Accepted Answers:

Accepted Answers:

c)

(a) 0

No, the answer is incorrect.

Question 06 & 07:

Accepted Answers:

Week 5: Assignment 5 The due date for submitting this assignment has passed.

As per our records you have not submitted this assignment. Question 01 & 02:

continuous reactor. The product stream from the reactor is analyzed and found to contain 55 mol % ethylene bromide and 35 % HBr. The feed to the reactor contains only ethylene and HBr.

From the above data, calculate the fractional conversion of the limiting reactant. (a) 0.55 (b) 0.85

(c) 0.96(d) 0.63(a) (b) (c)

From the above data, calculate the percentage by which the other reactant is in excess. (a) 54 % (b) 59 % (c) 70 % (d) 64 %

(a) (b) (c) (d) No, the answer is incorrect. Score: 0

Question 03, 04 & 05: Acrylonitrile is produced in the reaction of propylene, ammonia, and oxygen: $C_3H_6 + NH_3 + 1.5 O_2 \longrightarrow C_3H_3N + 3H_2O$ The feed contains 10.0 mol% propylene, 15.0% ammonia and rest air. A fractional conversion of 30.0% of the limiting reactant is achieved. Taking 100 mol of feed as a basis:

(a) Ammonia (b) Propylene (c) Air (d) Oxygen

From the above data, determine which of the following reactant is limiting?

(b) (c) (d) No, the answer is incorrect. Score: 0 Accepted Answers: b) 4) From the above data, calculate the percentage by which two other reactants are in excess. (a) 20.0 % excess C₃H₆ and 9.3 % excess O₂ (b) 50.0 % excess NH3 and 9.3 % excess C3H6 (c) 20.0 % excess NH₃ and 5.0 % excess O₂

(d) 50.0 % excess NH₃ and 5.0 % excess O₂

O₂, C₃H₃N and H₂O in the product stream.

(d) No, the answer is incorrect. Score: 0 Accepted Answers: 5) From the above data, for a 40% conversion of the limiting reactant, calculate the molar amounts of

(a) 9.8 moles O₂, 4.0 moles of C₃H₃N and 12.0 moles of H₂O

(b) 11.9 moles O2, 3.0 moles of C3H3N and 9.0 moles of H2O

(c) 9.8 moles O₂, 3.0 moles of C₃H₃N and 12.0 moles of H₂O (d) 11.9 moles O2, 4.0 moles of C3H3N and 9.0 moles of H2O (a) (b) (c)

A mixture of ethylene and nitrogen is fed to a reactor in which some of the ethylene is converted to

100 mol/s Reactor X mol C₂H₄/s 0.70 mol C₂H₄/mol Y mol C₄H₈/s 0.30 mol N₂/mol Z mol N₂/s

Calculate the number of independent molecular species involved in the process.

(a) 1 (b) 2 (c) 3 (d) 4 (a) (b) (c) (d) No, the answer is incorrect.

(b) 1 (c) 2 (d) 3 (a) (b) (c) (d) No, the answer is incorrect. Score: 0

The gases not purged constitute the stream recycled to the reactor.

Mixed feed

Calculate the number of independent atomic species involved in the process.

Fresh feed

No, the answer is incorrect.

Accepted Answers:

Score: 0

(a)

(b)

(d)

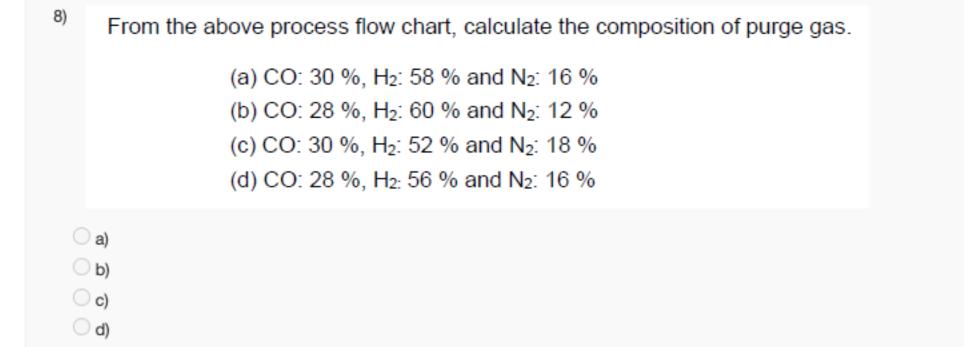
Score: 0

No, the answer is incorrect.

Accepted Answers:

d)

Question 08, 09 & 10:


Reactor Condenser 100 mol/h 13 mole % N₂ 32 mole% CO 64 mole% H₂ 4 mole % N₂ Liquid Methanol

Given below is a process flow chart for synthesis of liquid methanol. To prevent the buildup of

nitrogen in the system, a purge stream is withdrawn from the gas stream leaving the condenser.

Purge

Recycle feed 300 mol/h

(a) 31.50 % (b) 35.00 % (c) 21.55 % (d) 19.34 %

From the above process flow chart, calculate the single pass conversion of CO.

O c) (d) No, the answer is incorrect. Score: 0 Accepted Answers: c) From the above process flow chart, calculate the overall conversion of CO.

(a) 78.13 % (b) 55.57 % (c) 66.72 % (d) 85.23 % (a) (b) (c)