Unit 4 - Week 2

How to access the portal?

Lecture 6 : Fluid - particle

Lecture 7 : Fluid - particle

Lecture 8 : Fluid - particle

Lecture 9 : Fluid - particle

Lecture 10 : Fluid - particle

mechanics (Contd.)

mechanics (Contd.)

mechanics (Contd.)

mechanics (Contd.)

O Quiz : Assignment 2

Feedback for Week 2

Lecture Materials

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Week 10

Week 11

Week 12

DOWNLOAD VIDEOS

Details Solution

Live Session

Week 0 Assignment 0

week 1

Week 2

mechanics

Course outline

No, the answer is incorrect.

a) Lower drag

b) Higher drag

No, the answer is incorrect.

Stokes' law is valid only when

Accepted Answers:

a) $Re_p \ll 1$

b) $Re_p\gg 1$

c) $Re_p = 1$

d) None of the these

No, the answer is incorrect.

a) same direction

c) perpendicular

d) None of these

No, the answer is incorrect.

Accepted Answers:

a) $C_D = \frac{64}{Re_p}$

b) $C_D = \frac{16}{Re_p}$

c) $C_D = \frac{24}{Re_p}$

d) None of these

No, the answer is incorrect.

a) Flow over the body

No, the answer is incorrect.

a) Temperature

d) Surface tension

No, the answer is incorrect.

a) Smooth flow

b) Rough flow

c) Uniform flow

d) Random flow

No, the answer is incorrect.

9) The turbulent boundary layer is a _

10) For flow over a flat plate, the thickness of boundary layer increases in the ____

11) A thin flat plate is placed parallel to a 4 m/s stream of water at 20° C. At what distance x from

12) Determine how far from the front edge of a flat plate the boundary layer becomes turbulent

when the fluid approach velocity is 2.5 m/s. How thick is the boundary layer at this location?

Assume $\vartheta = 1.5 \times 10^{-5} \ m^2/\text{s}$ and critical Reynolds number = 5×10^5 for turbulent condition.

13) Wind is blowing past a 4 mm-diameter electrical transmission line at 50 km/h. Calculate the drag

(Assume air density= 1.225 kg/m³, kinematic viscosity = 1.470×10^{-5} m²/s and take $C_D = 1.25$)

14) A viscous fluid is flowing over a flat plate such that the boundary layer thickness at a distance 2

15) A cylinder, 6 m in diameter and 30 m long, is dropped in seawater and is settling at 2 m/s. Find

the drag exerted on it. The drag coefficient for Reynolds number greater than 105 may be taken as 0.75. The density of seawater is given as 1035 kg/m³ and the kinematic viscosity as 0.015 stokes.

m from the leading edge is 18-mm. Assuming laminar flow; calculate the boundary layer

thickness at distances of 0.40 and 4.0 m from the leading edge, respectively.

the leading edge, the boundary layer thickness will be 3.5 cm? (Kinematic viscosity of water at 20

a) Non-uniform with swirls

Accepted Answers:

b) Uniform

d) Smooth

c) Less stable

No, the answer is incorrect.

a) perpendicular

b) opposite

c) same

○ a

 \bigcirc d

Score: 0

to the direction of flow.

d) None of the above

No, the answer is incorrect.

Accepted Answers:

 $^{\circ}C = 10^{-6} \text{ m}^2/\text{s}$

a) 9.93 m

b) 15.8 m

c) 6.98 m

○ c

 \bigcirc d

d) 13.43 m

No, the answer is incorrect.

Accepted Answers:

a) 15.94 mm

b) 11.2 mm

c) 21.2 mm

○ a O b

○ c \bigcirc d

Score: 0

d) 26.54 mm

No, the answer is incorrect.

force exerted on a 120 m long section of the wire.

Accepted Answers:

a) 62.98 N

b) 78.90 N

c) 64.34 N d) 70.89 N

No, the answer is incorrect.

a) 0.006 m, 0.0624 m

b) 0.008 m, 0.0254 m

c) 0.004 m, 0.0325 m

d) 0.002 m, 0.0158 m

No, the answer is incorrect.

Accepted Answers:

a) 877.473 kN

b) 948.210 kN c) 821.102 kN d) 988.347 kN

No, the answer is incorrect.

Accepted Answers:

Accepted Answers:

○ a \bigcirc b

○ c \bigcirc d

Score: 0

○a (b

 \bigcirc d

Score: 0

○ a \bigcirc b

○ c $\bigcirc d$

Score: 0

Accepted Answers:

Accepted Answers:

b) Pressure

c) Viscosity

Accepted Answers:

b) Be attached to the body

c) Move away from the body

d) Move parallel to the body

7) The main property that affects a boundary layer is_

The laminar boundary layer is a _____

Accepted Answers:

b) opposite direction

Drag force acts in _____ as that of relative velocity.

Drag coefficient predicted by Stokes' law is

For a streamlined body to achieve low drag coefficient, the boundary layer must_

Accepted Answers:

c) Same drag

d) No drag

Accepted Answers:

 \bigcirc a

Ob

○ c

 \bigcirc d

Score: 0

○ b

() c

 \bigcirc d

Score: 0

O C

 \bigcirc d

Score: 0

○ c \bigcirc d

Score: 0

○ a ○ b

 \bigcirc d

Score: 0

○ b

 \bigcirc d

Score: 0

○ a

() c \bigcirc d

Score: 0

○ a

() c \bigcirc d

Score: 0

○ a

 \bigcirc d

Score: 0

What is the dimension for drag coefficient? a) N/s

b) m/s

The due date for submitting this assignment has passed.

Progress

1 point

0 points

2 points

2 points

2 points

2 points

direction

Mentor

Assignment 2

As per our records you have not submitted this assignment.

c) kg/N d) Dimensionless

Bodies with a larger cross section will have_

Ask a Question

Due on 2019-08-21, 23:59 IST.