Courses » Adiabatic Two-Phase Flow and Flow Boiling in Microchannel					
Jnit 5 - Wee	k 4	Announcements	Course	Ask a Question	Progress
Course outline	Assignment	4 ting this assignment has passed.		Due on 2016-10-07	, 05:25 IST
Week 1:	1) For air-water flow 0.5 m/s), find out the constant $K = 0.8$	through a microchannel (air in-situ void fraction (α) using	flowing a g Armand	t 0.3 m/s and wate correlation. Given	er at 1 poin : the
Week 3	0.375 0.3				
Week 4 Lecture 16 : Void Fraction Characteristic Mini and Micro Channel	0.6 0.5 No, the answer is incorr Score: 0 Accepted Answers:	rect.			
Fraction and Pressure Drop in Reduced Dimensions - Experimental results	0.3 2) Void fraction (α) is as $\alpha = j_{G/}u_{G}$	s related to in situ gas veloci	ty (u _G) ar	nd inlet gas velocity	y (j _G) 1 poi n
Lecture 18 : Void Fraction and Pressure Drop in Reduced Dimensions - Experimental results (Contd)	$\alpha = j_G u_G$ $\alpha = j_G + u_G$ $\alpha = u_{G/j_G}$ No, the answer is incorr	rect.			
Lecture 19 : Theoretical Analysis of Two Phase Flow in Reduced	Accepted Answers: $\alpha = j_{G}/u_{G}$ 3) In-situ vapor velocity (U	${\sf I}_{G})$ can be measured by			1 poin
Dimensions Lecture 20 : Theoretical Analysis of Two Phase Flow in Reduced Dimensions	Computerized imag Method based on c Using laser diode te All of the above	ge analysis of high speed high definition conservation of mass echnique rect.	on image see	quences	
(Contd.) Lecture 21 : Flow Pattern based Analysis in Micro Systems - Drift Flux	Score: 0 Accepted Answers: All of the above 4) Match the followin	ng			1 poin
Decture 22 : Flow Pattern based Modelling - Slug Flow Model	 1) Stratified flow 2) Bubbly flow 	a) Dispersed flow b) Mixed / Transition flo	w		
Lecture 23 : Flow Boiling in Microchannels	3) Churn flow 4) Annular flow	c) Separated flow			
Lecture 24 : Tutorial I	 1-c, 2-a, 3-a, 4-c 1-c, 2-b, 3-a, 4-c 				

$https://online courses-archive.nptel.ac.in/noc16_ch08/unit?unit=34\&assessment=46$

W

22/07/2020

- Lecture 25 : Tutorial II
- Assignment 4 Solution
- Quiz : Assignment
 4

Adiabatic Two-Phase Flow and Flow Boiling in Microchannel - - Unit 5 - Week 4

 1-c, 2-a, 3-b, 4-c 1-a, 2-c, 3-b, 4-a 	
No, the answer is incorrect.	

Score: 0

Accepted Answers:

1-с, 2-а, 3-ь, 4-с

- 5) Which of the following is NOT an assumption of Homogeneous flow model
 - Two fluids are uniformly mixed and moving as a pseudo-fluid at the mixture velocity
 - Slip velocity between two phases are considered
 - Attainment of thermodynamic equilibrium between phases
 - Average properties of two fluids are taken as the property of the pseudo phase

No, the answer is incorrect.

```
Score: 0
```

Accepted Answers:

Slip velocity between two phases are considered

6) The problems associated with pressure drop measurement in microchannels are 1 point

- Several losses to be included (bends, expansions, contractions)
- High uncertainties in measurements of conduit diameter, fluid properties, flow rates
- High viscous dissipation leading to variations in fluid density at wall for heated tubes
- All of the above

No, the answer is incorrect. Score: 0 Accepted Answers: All of the above

7)

1 point

f y D in

Water (2 kg/s) and air (0.005 kg/s) flow through a conduit at conditions where homogene flow model can be assumed. Calculate the two phase viscosity (in Pa.s) using Beattie and Whalley equation.

 $\mu_{WATER} = 10^{-3}$ Pa.s

 $\rho_{WATER} = 1000 \text{ kg/m}^3$

 $\mu_{AIR} = 1.983 \times 10^{-5} Pa.s$ $\rho_{AIR} = 1.225 \text{ kg/m}^3$ 9.977×10^{-4} 2.240×10^{-5} 6.894×10^{-4} 8.960×10^{-4}

No, the answer is incorrect. Score: 0 Accepted Answers:

8.960 x 10⁻⁴

8) Two phase multiplier (gas phase) is expressed as

1 point

$$\Phi_{G}^{2} = \frac{\left(\frac{dp}{dz}\right)_{fr,TP}}{\left(\frac{dp}{dz}\right)_{fr,G}}$$

$$\Phi_{G}^{2} = \left(\frac{dp}{dz}\right)_{fr,TP} \times \left(\frac{dp}{dz}\right)_{fr,G}$$

$$\Phi_{G}^{2} = \frac{\left(\frac{dp}{dz}\right)_{fr,G}}{\left(\frac{dp}{dz}\right)_{fr,TP}}$$

$$\Phi_G^2 = \left(\frac{dp}{dz}\right)_{fr,TP} + \left(\frac{dp}{dz}\right)_{fr,G}$$

No, the answer is incorrect. Score: 0

Accepted Answers:

$$\Phi_G^2 = \frac{\left(\frac{dp}{dz}\right)_{fr,TP}}{\left|\left(\frac{dp}{dz}\right)_{fr,G}\right|}$$

9) What does the "single phase liquid flow" assumption indicate in the unit cell approach of Slug Flow Model?

- Gas and liquid phases flowing through the conduit is assumed to flow as a single pseudo phase
- **g**+ The pressure drop is assumed to be same as that encountered when the liquid flow alone through the con
- The liquid slug is assumed to be free of entrained air
- The liquid film thickness around the gas plug is assumed to be negligible

No, the answer is incorrect. Score: 0

Accepted Answers:

The liquid slug is assumed to be free of entrained air

10)Martinelli parameter is expressed as

$$\chi^{2} = \frac{\left(\frac{dp}{dz}\right)_{fr,G}}{\left(\frac{dp}{dz}\right)_{fr,L}}$$

$$\chi^2 = \left(\frac{dp}{dz}\right)_{fr,L} \times \left(\frac{dp}{dz}\right)_{fr,G}$$

$$\bigcirc$$

$$\chi^{2} = \frac{\left(\frac{dp}{dz}\right)_{fr,L}}{\left|\left(\frac{dp}{dz}\right)_{fr,G}\right|}$$

.

$$\chi^2 = \left(\frac{dp}{dz}\right)_{fr,L} + \left(\frac{dp}{dz}\right)_{fr,G}$$

No, the answer is incorrect. Score: 0

Accepted Answers:

$$\chi^{2} = \frac{\left(\frac{dp}{dz}\right)_{fr,L}}{\left/\left(\frac{dp}{dz}\right)_{fr,G}}$$

Previous Page

End

1 point

f V I prin

