Unit 6 - Week 5

Course outline

How to access the portal?

Week 1

Week 2

Week 3

Week 4

Week 5

- Lecture 21 Modelling Evolution on Fitness Landscapes - 3

Lecture 22 :
Role of
Randomness in
Evolution

- Lecture 23 : Genetic Drift in Evolution of Microbial Populations

Lecture 24 Dynamics of a Moran Process without Selection

Lecture 25 : Dynamics of a Moran Process without Selection

Quiz: Week 5 Assessment

Week 5
Assessment Solutions

Week 6

Week 5 Assessment

The due date for submitting this assignment has passed. Due on 2017-08-30, 23:59 IST As per our records you have not submitted this assignment.

1) What is the critical value of mutation rate (μ), above which localization of a population around $\mathbf{1}$ point a fitness peak may not happen?
$\mathrm{O}(\mathrm{L})$
$\mathrm{O}\left(\mathrm{L}^{-1}\right)$
$\mathrm{O}(\log \mathrm{L})$
$\mathrm{O}\left(\mathrm{L}^{2}\right)$
No, the answer is incorrect.
Score: 0

Accepted Answers:

$O\left(L^{-1}\right)$
2) What type of populations allow easier elimination of one of the genotypes purely by chance? 1 point

Clonal population
Small populations
Large populations
Heterogeneous population
No, the answer is incorrect.
Score: 0
Accepted Answers:
Small populations
3) What is the ultimate outcome of the marbles in a jar game?

1 point
One of the 2 types of marbles will eventually be eliminated
The game will continue indefinitely.
The jar will become empty.
Equal number of marbles of the 2 types in the jar.
No, the answer is incorrect.
Score: 0
Accepted Answers:
One of the 2 types of marbles will eventually be eliminated.
4) What are the analogies between the marbles in a jar game and bacterial cell division? Tick all1 point correct.
\square Selecting any marble is equally likely is analogous to all individuals having the same fitness.

- Picking a marble is analogous to death of an individual in the population.
\square Marbles do not change colour is analogous to not allowing mutations in the population.

Sampling rule - the same individual can be selected for birth and death process is analogous to sampling with replacement.

No, the answer is incorrect.

Score: 0

Accepted Answers:

Sampling rule - the same individual can be selected for birth and death process is analogous to sampling with replacement.
Selecting any marble is equally likely is analogous to all individuals having the same fitness.
Marbles do not change colour is analogous to not allowing mutations in the population.
5) In a Moran process, how can the distribution of population between two genotypes A and $B \quad 1 p c$ remain unaltered?When A is chosen for birth and B is chosen for death.When A is chosen for birth and death.When B is chosen for birth and death.
When B is chosen for birth and A is chosen for death.
No, the answer is incorrect.
Score: 0

Accepted Answers:

When A is chosen for birth and death.
When B is chosen for birth and death.
6) While a new mutant tries to establish itself, the probability $P_{i} \rightarrow i+1$ is equal to:
$P_{i} \rightarrow i$
$P_{i} \rightarrow{ }_{i-1}$
$2 P_{i} \rightarrow i-1$
$2 P_{i} \rightarrow{ }_{i+1}$
No, the answer is incorrect.
Score: 0

Accepted Answers:

$P_{i} \rightarrow i=1$
7) With no selective advantage present what is the probability of one individual replacing all

1 point other $\mathrm{N}-1$ individuals in a population during a Moran process?
$\frac{1}{2 N}$ Because everyone is equally likely to survive and/or die
$\frac{1}{N}$ Because everyone is equally likely to survive and/or die
\qquad
$\frac{1}{N-1}$ Because everyone is equally likely to survive and/or die
-
$\frac{1}{N^{2}}$ Because everyone is equally likely to survive and/or die
No, the answer is incorrect.
Score: 0

Accepted Answers:

$\frac{1}{N}$ Because everyone is equally likely to survive and/or die
8) When different genotypes have different fitness, what is the mathematical expression for

1 point probability of choosing i-th for birth and j-th for death?

$$
\frac{y_{i} f_{i}}{\sum y_{j} f_{j}} \cdot \frac{y_{i}}{N}
$$

$\frac{y_{j} f_{j}}{\sum y_{i} f_{i}} \cdot \frac{y_{j}}{N}$
$\frac{y_{i} f_{i}}{\sum y_{i} f_{i}} \cdot \frac{y_{j}}{N}$

$$
\frac{y_{j} f_{j}}{\sum y_{j} f_{j}} \cdot \frac{y_{i}}{N}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\frac{y_{i} f_{i}}{\sum y_{i} f_{i}} \cdot \frac{y_{j}}{N}
$$

9) The left hand side expression denotes the probability of a single mutant individual with fitness $r>1$ going to fixation, given all other individuals have fitness 1 . The right hand side denotes th
probability of fixation when there is no fitness difference, thus no selection. Tick the correct relationship. $\frac{1-\frac{1}{r}}{1-\frac{1}{r^{N}}}[] \frac{1}{N}$
<, lesser than
$>$, greater than<=, lesser than equal to$>=$, greater than equal to

No, the answer is incorrect.
Score: 0

Accepted Answers:

>, greater than
10)What is a realistic value of percentage fitness advantage imparted by beneficial mutations?

```
3%
-2%
12%
0%
```

No, the answer is incorrect.
Score: 0
Accepted Answers:
3\%
11)Given, fitness of genotype $A=1$, fitness of genotype $B=1.05$, population of genotype $A=1$ point 999 , population of genotype $B=1$. The probability of fixation of genotype B, can be approximated as?

0.050.005
No, the answer is incorrect.
Score: 0
Accepted Answers:
0.05

A project of
NPTEL
National Programme on Technology Enhanced Learning

In association with

Funded by
Government of India
Ministry of Human Resource Development

Powered by
Google

