Unit 4 - Week 3

Week 3 Assessment

Course outline

How to access the portal?

Week 1

Week 2

Week 3

Lecture 11 :
Modelling
Mutations - 3

Lecture 12 Genetic Code and Sequence Spaces

Lecture 13 :
Sequence
Spaces as Networks

Lecture 14 :
Sequence
Space to
Fitness
Landscape
Lecture 15 : Properties of Fitness Landscapes and Quasispecies

Quiz: Week 3 Assessment

Week 3
Assessment Solutions

Week 4

Week 5

Week 6

Week 7

Week 8

The due date for submitting this assignment has passed. Due on 2017-08-16, 23:59 IS As per our records you have not submitted this assignment.

1) What happens to the vector v when multiplied with the matrix A ?

1 point
$A=\left[\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right], v=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Both magnitude and direction changes
Magnitude is changed only
Remains the same
Only direction changes
No, the answer is incorrect.
Score: 0
Accepted Answers:
Both magnitude and direction changes
2) What happens to the vector v when multiplied with the matrix A ?

1 point
$A=\left[\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right], v=\left[\begin{array}{c}1 \\ -2\end{array}\right]$
Remains the same
Magnitude is changed only
Both magnitude and direction changes
Only direction changes
No, the answer is incorrect.
Score: 0
Accepted Answers:
Both magnitude and direction changes
3) For a system, $M x=y$, if x and y are i \qquad then x is an ii) \qquad of M, and $|y| /|x|$ the 1 point iii) \qquad -.
i) eigen vectors, ii) eigen value, iii) collinear.
i) collinear, ii) eigen vector, iii) eigen value.
i) eigen values, ii) eigen vector, iii) collinear.
i) collinear, ii) eigen value, iii) eigen vector.

No, the answer is incorrect.
Score: 0
Accepted Answers:
i) collinear, ii) eigen vector, iii) eigen value.
4) Tick all the properties of mutation matrix Q.

1 point
$\sum_{i=1}^{n}=q_{i j}=1$ (because all the elements together represents the total sample space).
\square All the entries are greater than 1 (because they are probabilities).
\square
$\sum_{j=1}^{n}=q_{i j}=1$ (because all the elements together represents the total sample space).
$q_{i j} \in[0,1]$, all the entries are between 0 and 1 (because they are probabilities).
No, the answer is incorrect.
Score: 0
Accepted Answers:
$q_{i j} \in[0,1]$, all the entries are between 0 and 1 (because they are probabilities).
$\sum_{j=1}^{n}=q_{i j}=1$ (because all the elements together represents the total sample space).
5) What is the process of information transfer from RNA to Protein called?

Transcribing
Translation
Transliteration
Transcription
No, the answer is incorrect.
Score: 0
Accepted Answers:
Translation
6) Which of the following is true for the DNA to Protein translation code?

1 point
\square An RNA doublet combinatorial code can account for all the natural amino acids.
\square The number of letters in the two languages do not match and hence require a combinatorial code.
\square The RNA triplet combinatorial code cannot account for all the known amino acids.
\square The RNA triplet combinatorial code does not have a one to one relationship, and thus leads to degeneracy.

No, the answer is incorrect.
Score: 0

Accepted Answers:

The number of letters in the two languages do not match and hence require a combinatorial code. The RNA triplet combinatorial code does not have a one to one relationship, and thus leads to degenerac.
7) What is degeneracy in the genetic code?

Some triplet codes not denoting any amino acids.
Many different amino acids corresponding to one triplet code.
Many different triplet combinatorial codes denoting one amino acid.
One triplet combinatorial code coding for many amino acids.
No, the answer is incorrect.
Score: 0
Accepted Answers:
Many different triplet combinatorial codes denoting one amino acid.
8) Given a hypothetical sequence made from N alphabets and has length 20 , what is the size of 1 point the sequence space?
N^{20}
20^{N}
None of the choices.
$20 \cdot N$

No, the answer is incorrect.
Score: 0
Accepted Answers:
N^{20}
9) Given the sequences, sort them such that each has only one mutation difference between

1 point them.

CAAAGT -> CAAGGT -> TAAGAT -> TAAGAA -> CAAGATCAAAGT -> CAAGAT -> TAAGAT -> TAAGAA -> CAAGGT
CAAAGT -> CAAGGT -> CAAGAT -> TAAGAT -> TAAGAA
CAAAGT -> CAAGGT -> CAAGAT -> CAAAGT -> TAAGAT
No, the answer is incorrect.
Score: 0
Accepted Answers:
CAAAGT -> CAAGGT -> CAAGAT -> TAAGAT -> TAAGAA
10How many other nodes does one node connect to, in the sequence space of a L amino acids $1 \mathrm{pc} \dot{\sigma}^{+}$ long sequence?

- 19^{L}
-20L
- L^{19}
- 19 L

No, the answer is incorrect.
Score: 0

Accepted Answers:

19L
11) or a DNA sequence, calculate the fraction of nodes as neighbours: $\frac{3 L}{\left.4^{L}-1\right)}$, given $L=1$ and 1 point
5. Comment on the nature of a graph between the fraction vs L.
0.015 and 1. As Lincreases, the fraction of neighbour nodes sharply increases, thus a larger sequence is more densely connected.
1 and 0.015 . As L increases, the fraction of neighbour nodes sharply decreases, thus a larger sequence is more sparsely connected.
0.015 and 1. As L decreases, the fraction of neighbour nodes sharply increases, thus a smaller sequence is more densely connected.

1 and 0.015 . As L increases, the fraction of neighbour nodes sharply increases, thus a larger sequence is more densely connected.

No, the answer is incorrect.
Score: 0

Accepted Answers:

1 and 0.015. As Lincreases, the fraction of neighbour nodes sharply decreases, thus a larger sequence i: more sparsely connected.

12Select examples of beneficial, lethal, neutral, deleterious mutations (in that order), from the $\mathbf{1}$ point list below. Given the starting population has fitness 2.

3, 0, 2, 1
(10, 0, 3, 0.5
2.5, 1, 2.2, 1

10, 0, 2, -1
No, the answer is incorrect.
Score: 0
Accepted Answers:
3, 0, 2, 1
13)What is the most common value of fitness on a fitness landscape, and why?

1 point

Negative one, because most sequences do not support life.
One, because most sequences have the same fitness.
Zero, because most sequences are arbitrary and hence are not viable.No value can repeat on a fitness landscape.
No, the answer is incorrect.
Score: 0
Accepted Answers:
Zero, because most sequences are arbitrary and hence are not viable.

Previous Page

A project of
NDEEL
National Programme on
Technology Enhanced Learning

In association with

Funded by
Government of India
Ministry of Human Resource Development

Powered by

