

reviewer2@nptel.iitm.ac.in ▼

Courses » Introduction to Evolutionary Dynamics

Announcements

Course

Ask a Question

Progress

Unit 4 - Week 3

Course outline

How to access the portal?

Week 1

Week 2

Week 3

- O Lecture 11: Modelling Mutations - 3
- O Lecture 12: Genetic Code and Sequence Spaces
- O Lecture 13: Sequence Spaces as Networks
- Lecture 14 : Sequence Space to Fitness Landscape
- Lecture 15 : Properties of **Fitness** Landscapes and Quasispecies
- Quiz: Week 3 Assessment
- Week 3 Assessment Solutions

Week 4

Week 5

Week 6

Week 7

Week 8

Week 3 Assessment

The due date for submitting this assignment has passed. Due on 2017-08-16, 23:59 IS As per our records you have not submitted this assignment.

1 point

1) What happens to the vector v when multiplied with the matrix A?

$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}, v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

- Both magnitude and direction changes
- Magnitude is changed only
- Remains the same
- Only direction changes

No, the answer is incorrect.

Score: 0

Accepted Answers:

Both magnitude and direction changes

2) What happens to the vector v when multiplied with the matrix A?

1 point

$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}, v = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

- Remains the same
- Magnitude is changed only
- Both magnitude and direction changes
- Only direction changes

No, the answer is incorrect.

Score: 0

Accepted Answers:

Both magnitude and direction changes

3) For a system, Mx = y, if x and y are i) _____, then x is an ii) _____ of M, and |y|/|x| the **1** point

- i) eigen vectors, ii) eigen value, iii) collinear.
- i) collinear, ii) eigen vector, iii) eigen value.
- i) eigen values, ii) eigen vector, iii) collinear.
- i) collinear, ii) eigen value, iii) eigen vector.

No, the answer is incorrect.

Score: 0

Accepted Answers:

i) collinear, ii) eigen vector, iii) eigen value.

4) Tick all the properties of mutation matrix Q.

1 point

Introduction to	Evolutionary	Dynamics	Unit 4 - Week 3
illici oddectioli te	LVOIGEIOIIGI	Dynanics	OTHE T VICER

$\sum_{i=1}^{n} = q_{ij} = 1$ (because all the elements together represents the total sample space). All the entries are greater than 1 (because they are probabilities).
$\sum_{j=1}^{n}=q_{ij}=1$ (because all the elements together represents the total sample space).
$q_{ij} \in [0,1]$, all the entries are between 0 and 1 (because they are probabilities).
No, the answer is incorrect. Score: 0
Accepted Answers: $q_{ij} \in [0, 1]$, all the entries are between 0 and 1 (because they are probabilities). $\sum_{j=1}^{n} = q_{ij} = 1$ (because all the elements together represents the total sample space).
5) What is the process of information transfer from RNA to Protein called?
Transcribing Translation Transliteration Transcription
No, the answer is incorrect. Score: 0
Accepted Answers: Translation
6) Which of the following is true for the DNA to Protein translation code? 1 point
 An RNA doublet combinatorial code can account for all the natural amino acids. The number of letters in the two languages do not match and hence require a combinatorial code. The RNA triplet combinatorial code cannot account for all the known amino acids. The RNA triplet combinatorial code does not have a one to one relationship, and thus leads to degeneracy.
No, the answer is incorrect. Score: 0
Accepted Answers: The number of letters in the two languages do not match and hence require a combinatorial code. The RNA triplet combinatorial code does not have a one to one relationship, and thus leads to degener
7) What is degeneracy in the genetic code? 1 point
 Some triplet codes not denoting any amino acids. Many different amino acids corresponding to one triplet code. Many different triplet combinatorial codes denoting one amino acid. One triplet combinatorial code coding for many amino acids.
No, the answer is incorrect. Score: 0
Accepted Answers: Many different triplet combinatorial codes denoting one amino acid.
8) Given a hypothetical sequence made from N alphabets and has length 20, what is the size of 1 point the sequence space?
N^{20} 20^N None of the choices.
$20 \cdot N$

No, the answer is incorrect. Score: 0	
Accepted Answers:	
N^{20}	
9) Given the sequences, sort them such that each has only one mutation difference between them.	1 point
CAAAGT -> CAAGGT -> TAAGAT -> TAAGAA -> CAAGAT	
CAAAGT -> CAAGAT -> TAAGAA -> CAAGGT	f
CAAAGT -> CAAGGT -> CAAGAT -> TAAGAA	
CAAAGT -> CAAGGT -> CAAAGT -> TAAGAT	7
No, the answer is incorrect. Score: 0	f
Accepted Answers: CAAAGT -> CAAGGT -> CAAGAT -> TAAGAA	in
10)How many other nodes does one node connect to, in the sequence space of a L amino acid ong sequence?	
○ 19 ^L	
○ 20L	
○ L ¹⁹	
○ 19L	
No, the answer is incorrect. Score: 0	
Accepted Answers: 19L	
11) For a DNA sequence, calculate the fraction of nodes as neighbours: $\frac{3L}{4^L-1}$, given L = 1 and	1 point
5. Comment on the nature of a graph between the fraction vs L.	
0.015 and 1. As L increases, the fraction of neighbour nodes sharply increases, thus a sequence is more densely connected.	larger
1 and 0.015. As L increases, the fraction of neighbour nodes sharply decreases, thus a sequence is more sparsely connected.	larger
 0.015 and 1. As L decreases, the fraction of neighbour nodes sharply increases, thus a sequence is more densely connected. 	smaller
1 and 0.015. As L increases, the fraction of neighbour nodes sharply increases, thus a sequence is more densely connected.	larger
No, the answer is incorrect. Score: 0	
Accepted Answers: 1 and 0.015. As L increases, the fraction of neighbour nodes sharply decreases, thus a large more sparsely connected.	r sequence
12)Select examples of beneficial, lethal, neutral, deleterious mutations (in that order), from the list below. Given the starting population has fitness 2.	1 point
3, 0, 2, 1	
0 10, 0, 3, 0.5	
2.5, 1, 2.2, 1	
0 10, 0, 2, -1	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
3, 0, 2, 1	
13)What is the most common value of fitness on a fitness landscape, and why?	1 point

Introduction to Evolutionary Dynamics - - Unit 4 - Week 3

- Negative one, because most sequences do not support life.
- One, because most sequences have the same fitness.
- Zero, because most sequences are arbitrary and hence are not viable.
- No value can repeat on a fitness landscape.

No, the answer is incorrect.

Score: 0

Accepted Answers:

Zero, because most sequences are arbitrary and hence are not viable.

Previous Page

End

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of

In association with

Funded by

Government of India Ministry of Human Resource Development

Powered by

