Course outline

Week-0

Equations

Week 2:

Week 3: Nozzle Characteristics

How to access the portal?

Week 1: Introduction to

Thermochemistry, Thrust Equation & Performance

Week 4: Characteristic

Elements of Orbital

Lecture 21: Flight

Mechanics

Vehicle

Velocity

Parameters of Rocket Engine

Parameters of Rocket Nozzle

Week 5: Flight Trajectory &

Performance of a Rocket

 Lecture 22: Flight Trajectory of Single Stage Rocket Vehicle

Lecture 23: Orbital Mechanics

Lecture 24: Types of Orbits

Lesson 25: Orbital & Escape

Ouiz: Week 5: Assignment

Week 5: Assignment Solution

Week 6: Types of Propellant & its Selection, Multi-staging of

Composite Propellant Rocket Engine, Burning and Flame

Week 8: Solid Propellants: Characteristics & Regression

Week 9: Evolution of Burning surface, Ignition System of Solid Propellant Grains, Types of Liquid Propellant Rocket Engine and Injection System

Week 10: Liquid Propellant Rocket Engines: Injection

Combustion Process and

Week 11: Feed System,

Ignition System, Combustion Instability & Cooling System

Week 12: Hybrid Propellant Rocket Engine and Nonchemical Rocket Engine

> ○2:1 ○4:1

○1.6:1

Score: 0

2:1

No, the answer is incorrect.

Accepted Answers:

system, Atomization,

Feed System

in LPRE

Feedback For Week 5

Week 7: Solid, Liquid &

rocket and SRPE

Structure

Rate Relation

Rocket Engines & Governing

Unit 7 - Week 5: Flight Trajectory & Elements of Orbital Mechanics

Week 5: Assignment The due date for submitting this assignment has passed.	Due on 2019-09-04, 23:59	9 IST.
As per our records you have not submitted this assignment.		
 Coasting height is the height attained by the rocket vehicle just before the complete burnout. Gi True	ven statement is:	1 poin
False		
No, the answer is incorrect. Score: 0 Accepted Answers:		
False		
 All geostationary orbits are also geosynchronous but not all geosynchronous orbits are geostatic True 	onary. This statement is:	1 point
False		
No, the answer is incorrect. Score: 0 Accepted Answers:		
True		
3) The cube of time period of revolution of a planet around sun in an elliptical orbit is directly propaging axis. Given statement is:	portional to the square of it semi-	1 point
True False		
No, the answer is incorrect. Score: 0		
Accepted Answers: False		
4) A satellite of mass 35 kg is revolving in a circular orbit of moon at an altitude of 100 km. The relocity for this satellite would be:	atio of escape velocity to orbital	1 point
○1:1.41		
○2.21:1 ○1:2.21		
0 1.41:1 No, the answer is incorrect.		
Score: 0 Accepted Answers: 1.41:1		
5) Which of the following variable does not affect the speed of satellite orbiting in a circular orbit	around a planet	1 point
mass of the satellite	a piunot	. point
mass of the planet altitude of the orbit		
No, the answer is incorrect.		
Score: 0 Accepted Answers: mass of the satellite		
6) When the satellite moves in the opposite direction in which earth rotates in equatorial plane; the	is type of orbit is known as:	1 point
Equatorial orbit		,
Retrograde equatorial orbit Polar orbit		
Ogeostationary orbit No, the answer is incorrect.		
Score: 0 Accepted Answers: Retrograde equatorial orbit		
7) Which of the following orbit is useful for satellite in order to locate the position of natural disas	ters such as storm & hurricanes:	1 point
Equatorial orbit		
Retrograde equatorial orbit Polar orbit		
Ogeostationary orbit No, the answer is incorrect.		
Score: 0 Accepted Answers: Geostationary orbit		
8) The velocity of a satellite orbiting the earth in a circular orbit at an altitude of 300 km above the	e earth surface is: (Consider	1 point
$M_e=398600 \text{ km}^3/\text{s}^2$, $R_e=6400 \text{ km}$)		
○ 6.3 km/s ○ 7.7 km/s ○ 8.3 km/s		
○ 8.3 km/s ○ 10.2 km/s		
No, the answer is incorrect. Score: 0 Accepted Answers:		
7.7 km/s		
9) The period of revolution of a satellite orbiting the earth in a circular orbit of radius 7000 km from M_e =398600 km ³ /s ² , R_e =6400 km)	m the earth center is: (Consider	1 point
○5829 s ○15437 s		
0 1543 / s 0 8545 s 0 19435 s		
No, the answer is incorrect. Score: 0		
Accepted Answers: 5829 s		
10) Which of the following expression correctly represents the relation between angular velocity (ω	o) of a satellite and radius of orbit	1 point
2):		
$\omega \alpha 1/R^2$		
$\omega \alpha 1/R^3$		
$\omega \alpha 1/R$		
$\omega \alpha 1/R^1.5$		
No, the answer is incorrect. Score: 0 Accepted Answers:		
$\omega \alpha 1/R^1.5$		
11) The value of escape velocity on the surface of a planet having radius of 1200 km and gravitation anet, 1.8 m/s ² :	nal acceleration on the surface of	2 points
○ 11.22 km/s ○ 5.68 km/s		
2.08 km/s 8.58 km/s		
No, the answer is incorrect. Score: 0		
Score: 0 Accepted Answers: 2.08 km/s 12) A satellite is revolving in an elliptical orbit around the earth which passes through perigee altitu	·	3 points
Score: 0 Accepted Answers: 2.08 km/s 12) A satellite is revolving in an elliptical orbit around the earth which passes through perigee altitu	·	3 points
Accepted Answers: 2.08 km/s 12) A satellite is revolving in an elliptical orbit around the earth which passes through perigee altitums. Then, the apogee altitude and velocity at that point are: (Consider GM _e =398600 km ³ /s ² , R _e =63	·	3 points
Score: 0 Accepted Answers: 2.08 km/s 12) A satellite is revolving in an elliptical orbit around the earth which passes through perigee altitum/s. Then, the apogee altitude and velocity at that point are: (Consider GM _e =398600 km ³ /s ² , R _e =63/9893 km & 4.54 km/s 7800 km & 4.54 km/s 7800 km & 3.78 km/s 9893 km & 3.78 km/s	·	3 points
Score: 0 Accepted Answers: 2.08 km/s 12) A satellite is revolving in an elliptical orbit around the earth which passes through perigee altitury. 13. Then, the apogee altitude and velocity at that point are: (Consider GM _e =398600 km ³ /s ² , R _e =63.00 km & 4.54 km/s 14. 7800 km & 4.54 km/s 15. 7800 km & 3.78 km/s 16. 9893 km & 3.78 km/s 17. 800 km & 3.78 km/s 18. 9893 km & 3.78 km/s 19. 9893 km & 3.78 km/s	·	3 points
Score: 0 Accepted Answers: 2.08 km/s 12) A satellite is revolving in an elliptical orbit around the earth which passes through perigee altitunes. Then, the apogee altitude and velocity at that point are: (Consider GM _e =398600 km ³ /s ² , R _e =63 9893 km & 4.54 km/s 7800 km & 4.54 km/s 7800 km & 3.78 km/s 9893 km & 3.78 km/s No, the answer is incorrect. Score: 0 Accepted Answers: 9893 km & 3.78 km/s	78 km)	
Accepted Answers: 2.08 km/s 12) A satellite is revolving in an elliptical orbit around the earth which passes through perigee altitum/s. Then, the apogee altitude and velocity at that point are: (Consider GM _e =398600 km ³ /s ² , R _e =63/9893 km & 4.54 km/s 7800 km & 4.54 km/s 7800 km & 3.78 km/s 9893 km & 3.78 km/s No, the answer is incorrect. Score: 0 Accepted Answers:	78 km) ne velocity, 1.2 km/s at an altitude	
Score: 0 Accepted Answers: 2.08 km/s 12) A satellite is revolving in an elliptical orbit around the earth which passes through perigee altitum/s. Then, the apogee altitude and velocity at that point are: (Consider GM _e =398600 km ³ /s ² , R _e =63' 9893 km & 4.54 km/s 7800 km & 4.54 km/s 7800 km & 3.78 km/s 9893 km & 3.78 km/s No, the answer is incorrect. Score: 0 Accepted Answers: 9893 km & 3.78 km/s 13) An artificial satellite is revolving around a planet in an elliptical orbit of eccentricity, 0.2 with the	78 km) ne velocity, 1.2 km/s at an altitude	
Score: 0 Accepted Answers: 2.08 km/s 12) A satellite is revolving in an elliptical orbit around the earth which passes through perigee altitum/s. Then, the apogee altitude and velocity at that point are: (Consider GM _e =398600 km ³ /s ² , R _e =63' 9893 km & 4.54 km/s 7800 km & 4.54 km/s 7800 km & 3.78 km/s 9893 km & 3.78 km/s 9893 km & 3.78 km/s No, the answer is incorrect. Score: 0 Accepted Answers: 9893 km & 3.78 km/s 13) An artificial satellite is revolving around a planet in an elliptical orbit of eccentricity, 0.2 with the filoso km. The velocity of the satellite at it's perigee and apogee would be: (Consider GM=4900 km) 1.46 km/s & 0.66 km/s	78 km) ne velocity, 1.2 km/s at an altitude	
Score: 0 Accepted Answers: 2.08 km/s 12) A satellite is revolving in an elliptical orbit around the earth which passes through perigee altitun/s. Then, the apogee altitude and velocity at that point are: (Consider GM _e =398600 km ³ /s ² , R _e =63' 9893 km & 4.54 km/s 7800 km & 4.54 km/s 7800 km & 3.78 km/s 9893 km & 3.78 km/s No, the answer is incorrect. Score: 0 Accepted Answers: 9893 km & 3.78 km/s 13) An artificial satellite is revolving around a planet in an elliptical orbit of eccentricity, 0.2 with the filoson km. The velocity of the satellite at it's perigee and apogee would be: (Consider GM=4900 km 1.46 km/s & 0.66 km/s 1.46 km/s & 0.98 km/s 2.14 km/s & 0.98 km/s	78 km) ne velocity, 1.2 km/s at an altitude	
Score: 0 Accepted Answers: 2.08 km/s 12) A satellite is revolving in an elliptical orbit around the earth which passes through perigee altitum/s. Then, the apogee altitude and velocity at that point are: (Consider GM _e =398600 km³/s², R _e =63' 9893 km & 4.54 km/s 7800 km & 4.54 km/s 7800 km & 3.78 km/s 9893 km & 3.78 km/s No, the answer is incorrect. Score: 0 Accepted Answers: 9893 km & 3.78 km/s 13) An artificial satellite is revolving around a planet in an elliptical orbit of eccentricity, 0.2 with the filoso km. The velocity of the satellite at it's perigee and apogee would be: (Consider GM=4900 km 1.46 km/s & 0.66 km/s 1.46 km/s & 0.98 km/s 2.14 km/s & 0.98 km/s 2.14 km/s & 0.66 km/s No, the answer is incorrect.	78 km) ne velocity, 1.2 km/s at an altitude	
Score: 0 Accepted Answers: 2.08 km/s 12) A satellite is revolving in an elliptical orbit around the earth which passes through perigee altituny. Then, the apogee altitude and velocity at that point are: (Consider GM _e =398600 km³/s², R _e =63) 9893 km & 4.54 km/s 7800 km & 4.54 km/s 7800 km & 3.78 km/s 9893 km & 3.78 km/s No, the answer is incorrect. Score: 0 Accepted Answers: 9893 km & 3.78 km/s 13) An artificial satellite is revolving around a planet in an elliptical orbit of eccentricity, 0.2 with the state of the satellite at it's perigee and apogee would be: (Consider GM=4900 km) 1.46 km/s & 0.66 km/s 1.46 km/s & 0.98 km/s 2.14 km/s & 0.98 km/s 2.14 km/s & 0.66 km/s No, the answer is incorrect. Score: 0 Accepted Answers:	ne velocity, 1.2 km/s at an altitude n ³ /s ² , R=1740 km)	3 points