

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

In association with

Introduction to Finite Volume Methods II - - Unit...

Convection term	No, the answer is incorrect.	
discritisation + High resolution	ce De Score: 0	
schemes	Accepted Answers:	
	Pe > 2	
week 5 - High	4) For a 1-D convection-diffusion problem on a uniform grid, let's define cell Peclet number 1 point	
resolution	as $Pe = \frac{\rho u \delta x}{r}$. When does upwind discretization of advection flux becomes inconsistent, given	
schemes + Temporal	1	
discritisation	continuity equation is satisfied	
	• Pe > 2	
week 6 -		
Temporal discretisation +	• Pe > 1/2	
Discretisation of	Always unbounded	
the Source Term,	Always bounded	
Relaxation and Other Details		
Other Details	No, the answer is incorrect.	
week 7 - Fluid	Score: 0	
Flow	Accepted Answers:	
Computation:	Always bounded	
Incompressible Flows	5) What can be said about central difference scheme for discretization of advection flux 1 point	
week 8 - Fluid	This is first order accurate	
Flow Computation	This is second order accurate	
and Some	This is conditionally bounded	
Advanced	This is unconditionally bounded	
Topics		
	No, the answer is incorrect.	
	Score: 0	
	Accepted Answers:	
	This is second order accurate	
	This is conditionally bounded	
	6) What can be said about upwind scheme for discretization of advection flux 1 point	
	This is first order accurate	
	This is second order accurate	
	This is conditionally bounded	
	This is unconditionally bounded	
	No, the answer is incorrect.	
	Score: 0	
	Accepted Answers:	
	This is first order accurate	
	This is unconditionally bounded	
	7) What can be said about downwind scheme for discretization of advection flux 1 point	
	This is first order accurate	
	This is second order accurate	
	This is conditionally bounded	
	This is unconditionally bounded	
	No, the answer is incorrect.	
	Score: 0	
	Accepted Answers:	
	This is first order accurate	

Introduction to Finite Volume Methods II - - Unit...

8) For an unsteady convection-diffusion **1** point equation $\frac{\partial \rho \phi}{\partial t} = -\frac{\partial \rho u \phi}{\partial x} + \frac{\partial}{\partial x} (\Gamma \frac{\partial \phi}{\partial x}) + Q = RHS$. For numerical stability of the solution to the equation 1 point \bigcirc $rac{\partial (RHS)}{\partial \phi_c} < 0$ $rac{\partial (RHS)}{\partial \phi_c} > 0$ 뮲 뮲 $rac{\partial(RHS)}{\partial\phi_c}=0$ Always stable 뮲 No, the answer is incorrect. Score: 0 **Accepted Answers:** 2 $\frac{\partial(RHS)}{\partial(RHS)} < 0$ $\partial \phi_c$ End

Previous Page

