Courses » Introduction to Finite Volume Methods II

Announcements Course Ask a Question Progress FAQ

Unit 2 - Week 1 -

Linear solvers

Assignment 1

The due date for submitting this assignment has passed.
As per our records you have not submitted this assignment.

1) Consider a linear system of algebraic equation $\mathbf{A x}=\mathbf{b}$, where 1 point

$$
\mathrm{A}=\left[\begin{array}{ccccc}
4 & -4 & -1 & 4 & 11 \\
2 & -5 & -2 & 2 & -1 \\
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 1 & 0 & 4 \\
2 & -3 & -1 & 2 & 3
\end{array}\right] \text { and } \mathrm{b}=\left[\begin{array}{c}
4 \\
9 \\
50 \\
-5 \\
4
\end{array}\right]
$$

Linear solvers-||

Linear
solvers-III
Linear
solvers-IV
Linear
solvers-V
Quiz :
Assignment 1
Solution for Assignment 1

Week 2 - Linear
solvers +
Convection term discretisation

Week 3 -
Convection term
discretisation
week 4 -
Convection term discritisation +

While using Gauss elimination method, what is the value of vector \mathbf{b} after forward elimination step?

$$
\left[\begin{array}{c}
4 \\
9 \\
50 \\
-5 \\
4
\end{array}\right]
$$

$$
\left[\begin{array}{c}
4 \\
7 \\
56 \\
9 \\
-1 / 3
\end{array}\right]
$$

$$
\left[\begin{array}{c}
4 \\
-7 \\
50 \\
-9 \\
10
\end{array}\right]
$$

© 2014 NPTEL - Privacy \& Terms - Honor Code - FAQs -
week 6 -
Temporal
discretisation +
Discretisation of
the Source Term,
Relaxation and Other Details
week 7 - Fluid
Flow
Computation:
Incompressible
Flows
week 8 - Fluid
Flow
Computation
and Some
Advanced
Topics
$\mathrm{ce} \mathrm{De} \quad\left[\begin{array}{c}4 \\ 7 \\ -50 \\ 9 \\ -1 / 2\end{array}\right]$
Score: 0
Accepted Answers:
$\left[\begin{array}{c}4 \\ 7 \\ 56 \\ 9 \\ -1 / 3\end{array}\right]$
$\left[\begin{array}{c}0 \\ -44 \\ 79 \\ -26 \\ 1\end{array}\right]$
$\left[\begin{array}{c}4 \\ 7 \\ 56 \\ 9 \\ -1 / 3\end{array}\right]$
$\left[\begin{array}{c}0 \\ 44 \\ 79 \\ 26 \\ 1\end{array}\right]$
$\left[\begin{array}{c}4 \\ -7 \\ 50 \\ -9 \\ 1 / 3\end{array}\right]$

No, the answer is incorrect.
2) In Q1, solve for \mathbf{x} using Gauss elimination method.

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\left[\begin{array}{c}0 \\ -44 \\ 79 \\ -26 \\ 1\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
4 & -4 & -1 & 4 & 11 \\
0 & -3 & -3 / 2 & 0 & -13 / 2 \\
0 & 0 & 7 / 4 & 3 & -17 / 4 \\
0 & 0 & 0 & -4 / 7 & -41 / 7 \\
0 & 0 & 0 & 0 & -1 / 3
\end{array}\right]} \\
& {\left[\begin{array}{ccccc}
4 & -4 & -1 & 4 & 11 \\
0 & 3 & 3 / 2 & 0 & 13 / 2 \\
0 & 0 & 7 / 4 & 3 & -17 / 4 \\
0 & 0 & 0 & 4 / 7 & 41 / 7 \\
0 & 0 & 0 & 0 & -1 / 3
\end{array}\right]} \\
& {\left[\begin{array}{ccccc}
4 & -4 & -1 & 4 & 11 \\
0 & -3 & -3 / 2 & 0 & -13 / 2 \\
0 & 0 & -7 / 4 & -3 & 17 / 4 \\
0 & 0 & 0 & -4 / 7 & -41 / 7 \\
0 & 0 & 0 & 0 & 1 / 3
\end{array}\right]} \\
& {\left[\begin{array}{ccccc}
4 & -4 & -1 & 4 & 11 \\
0 & 3 & 3 / 2 & 0 & 13 / 2 \\
0 & 0 & 7 / 4 & 3 & -17 / 4 \\
0 & 0 & 0 & 4 / 7 & 41 / 7 \\
0 & 0 & 0 & 0 & 1 / 3
\end{array}\right]}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0

$$
\begin{aligned}
& \text { Accepted Answers: } \\
& {\left[\begin{array}{ccccc}
4 & -4 & -1 & 4 & 11 \\
0 & -3 & -3 / 2 & 0 & -13 / 2 \\
0 & 0 & 7 / 4 & 3 & -17 / 4 \\
0 & 0 & 0 & -4 / 7 & -41 / 7 \\
0 & 0 & 0 & 0 & -1 / 3
\end{array}\right]}
\end{aligned}
$$

4) From $Q 3$, find $L=$?

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 / 2 & 1 & 0 & 0 & 0 \\
1 / 4 & 1 & 1 & 0 & 0 \\
1 / 4 & 1 & 1 / 7 & 1 & 0 \\
1 / 2 & -1 / 3 & 0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 / 2 & 1 & 0 & 0 & 0 \\
1 / 4 & -1 & 1 & 0 & 0 \\
1 / 4 & -1 & -1 / 7 & 1 & 0 \\
1 / 2 & 1 / 3 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 / 2 & 1 & 0 & 0 & 0 \\
1 / 4 & 1 & 1 & 0 & 0 \\
1 / 4 & 1 & -1 / 7 & 1 & 0 \\
1 / 2 & -1 / 3 & 0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
-1 / 2 & 1 & 0 & 0 & 0 \\
-1 / 4 & 1 & 1 & 0 & 0 \\
-1 / 4 & 1 & 1 / 7 & 1 & 0 \\
-1 / 2 & -1 / 3 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 1 / 2 & 1 & 0 & 0 & 0 \\ 1 / 4 & -1 & 1 & 0 & 0 \\ 1 / 4 & -1 & -1 / 7 & 1 & 0 \\ 1 / 2 & 1 / 3 & 0 & 0 & 1\end{array}\right]$
5) In Q1, if we solve $\mathbf{A x}=\mathbf{b}$ using $\mathbf{L U}$ decomposition such that, $\mathbf{U x}=\mathbf{y}$ and $\mathbf{L y}=\mathbf{b}$, find $\mathbf{y}=$?

$$
\begin{aligned}
& {\left[\begin{array}{c}
4 \\
9 \\
50 \\
-5 \\
4
\end{array}\right]} \\
& {\left[\begin{array}{c}
4 \\
7 \\
56 \\
9 \\
-1 / 3
\end{array}\right]} \\
& {\left[\begin{array}{c}
4 \\
-7 \\
50 \\
-9 \\
1 / 3
\end{array}\right]} \\
& {\left[\begin{array}{c}
4 \\
7 \\
-50 \\
9 \\
-1 / 2
\end{array}\right]}
\end{aligned}
$$

No, the answer is incorrect.
Score: 0
Accepted Answers:

$$
\left[\begin{array}{c}
4 \\
7 \\
56 \\
9 \\
-1 / 3
\end{array}\right]
$$

6) \ln Q5, find $x=$?
$\left[\begin{array}{c}0 \\ -44 \\ 79 \\ -26 \\ 1\end{array}\right]$
$\left[\begin{array}{c}4 \\ 7 \\ 56 \\ 9 \\ -1 / 3\end{array}\right]$
$\left[\begin{array}{c}0 \\ 44 \\ 79 \\ 26 \\ 1\end{array}\right]$
$\left[\begin{array}{c}4 \\ -7 \\ 50 \\ -9 \\ 1 / 3\end{array}\right]$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\left[\begin{array}{c}0 \\ -44 \\ 79 \\ -26 \\ 1\end{array}\right]$
7) How are x obtained in $\mathbf{Q 6}$ and $\mathbf{Q} 2$ related?
SameSame in this case but may be differentDifferentCan't say

No, the answer is incorrect.
Score: 0
Accepted Answers:
Same
8) How are bobtained from Q1 after forward elimination and \mathbf{y} obtained from $\mathbf{Q 5}$ related?

1 pointSameSame in this case but may be differentDifferentCan't say
No, the answer is incorrect.
Score: 0
Accepted Answers:
Same
9) What is the advantage of using LU decomposition over Gauss elimination method?No advantageCost of computation is less for solving single system of equationsCost of computation is less for solving multiple system of equations with same \mathbf{A} but differebe b's

Cost of computation is less for solving multiple system of equations with different \mathbf{A} 's and \mathbf{b} 's
No, the answer is incorrect.
Score: 0
Accepted Answers:
Cost of computation is less for solving multiple system of equations with same \boldsymbol{A} but different \boldsymbol{b} 's

Previous Page

