

16/05/2018

conservation equation

 Lecture 39 Conserved scalar approach for one dimensional flows

 Lecture 40 Introduction to turbulent combustion

Quiz : Week 8 Assessment 8

Week 8
Assessment 8
Solutions

Week 8
Feedback

Fundamentals Of Combustion (Part 1) - - Unit 9 - Week 8 : Conservation Equations

None of the above

No, the answer is incorrect. Score: 0

Accepted Answers: Kolmogorov length scale

5) Reynolds number estimate for the ratio of the largest to smallest length scales in the **1** point flow is approximately,

	Re ^{1/4}
--	-------------------

- Re^{1/2}
- Re^{3/4}
- Re^{5/4}

No, the answer is incorrect. Score: 0

Accepted Answers:

Re^{3/4}

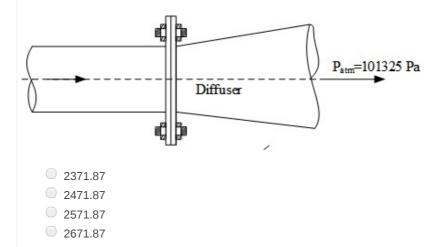
6) Boundary layer theory is/are applicable to,

1 point

- Two-dimensional laminar jet flows
- Impulsively started plate
- Thin flat plate on a uniform flow field
- All the above

No, the answer is incorrect. Score: 0

Accepted Answers: Two-dimensional laminar jet flows


7) Helium at 20^oC and low-pressure flow past a thin flat plate of 1m long and 3m wide. **4 points** The total frictional drag desired is 0.5N. What is the approximate pressure of helium if velocity is 30 m/s,

- 12080.85
- 18020.85
- 16202.75
- 12602.75

No, the answer is incorrect. Score: 0 Accepted Answers:

18020.85

8) The diffuser with an outlet diameter two times that of pipe is bolted to the pipe through 3 points which water enters with a gauge pressure of 75kPa, a velocity of 16 m/s and rate of 0.25 m³/s.Neglect the frictional forces.The force exerted on the bolts due to water flow is

16/05/2018

Fundamentals Of Combustion (Part 1) - - Unit 9 - Week 8 : Conservation Equations

No, the answer is incorrect. Score: 0 Accepted Answers: 2671.87

9) Consider a well-stirred reactor in which the fuel and oxidizer are mixed thoroughly, **5** points operating at 1 atm with fuel, oxidizer and a single product species. The reactants consisting of fuel $(Y_F = 0.3)$ and oxidizer $Y_{OX} = 0.7$ at 298 K, flow into the 0.004 m³ reactor at 0.75 kg/s has a heat loss of 1750W. Assume the following simplified thermodynamic properties: $c_p = 1200$ J/kg-K (all

species), MW=28 kg/kmol (all species), $h_{f,F}^0 = -1500 \text{ kJ/kg}$, $h_{f,Ox}^0 = 0$, and $h_{f,Px}^0 = -3500 \text{ kJ/kg}$. The fuel and oxidizer mass fractions in the outlet stream are 0.002 and 0.004, respectively. Determine temperature in the reactor

	2524.72
\bigcirc	2822.72
\bigcirc	3120.72
	3554.72

No, the answer is incorrect. Score: 0

Accepted Answers: 2822.72

10Determine the residence time for the above question in milliseconds inside the reactor 2 points

\bigcirc	0.445
\bigcirc	0.545
\bigcirc	0.645
	0.745
Scor	pted Answers:

Previous Page

End

