

n ptei

reviewer1@nptel.iitm.ac.in ▼

Courses » Fundamentals Of Combustion (Part 1)

Announcements Course Ask a Question Progress Mentor

Unit 7 - Week 6: Types of reaction and Introduction to Physics of combustion

Course Week 6 Assessment 6 outline The due date for submitting this assignment has passed. Due on 2018-03-21, 23:59 IST. How to access Submitted assignment the portal? 1) In Chain propagation reactions, 1 point Week 1: Introduction to consumes and produce the same number of radicals in reactant and product side Combustion there a net production of radicals in reactant side Week 2: there is a reduction in the number of radicals produced **Thermodynamics** stable molecules are produced of combustion No, the answer is incorrect. Week 3: Score: 0 **Themochemistry Accepted Answers:** consumes and produce the same number of radicals in reactant and product side Week 4: Chemical 2) In chain terminating reaction, 1 point Equilubrium and Kinetics there is a net destruction of radicals final products are formed consuming radicals Week 5: Chemical the ratio of free radicals in product and reactant is equal to unity Kinetics both (a) and (b) Week 6: Types No, the answer is incorrect. of reaction and Score: 0 Introduction to **Accepted Answers:** Physics of combustion both (a) and (b) 3) The unit of diffusion coefficient is 1 point Lecture 26 Classification of m^2 chemical reactions $^{\circ}$ m²s m^2/s O Lecture 27 Elementary S-1 chain reactions No, the answer is incorrect. Lecture 28 Score: 0 Quasi-steady state and partial **Accepted Answers:** equilibrium m^2/s approximation 4) Which of the following dimensionless number is unity when temperature and mass Lecture 29 1 point Physics of diffusivity profiles are identical, combustion

Lewis number

16/05/2018 Fundamentals	Of Combustion (Part 1) Unit 7 - Week 6 : Types of reaction and Introduction to Physics of combustion
CLecture 30	Prandtl number
Transport	Schmidt number
equations and molecular	None of the above
model for	No the enginer is incorrect
transport	No, the answer is incorrect. Score: 0
process	
Quiz : Week 6 Assessment 6	Accepted Answers: Lewis number
○ Week 6	5) The dimensionless number connecting thermal and momentum diffusivity is, 1 point
Assessment 6 Solutions	Lewis number
	Prandtl number
Week 6Feedback	Schmidt number
	None of the above
Week 7:	Notife of the above
Transport Phenomena	No, the answer is incorrect. Score: 0
Week 8 : Conservation	Accepted Answers: Prandtl number
Equations	6) The length, diameter and the surface temperature of a steam pipeline is 30m, 0.1m and 1 point
	120°C respectively. The ambient temperature is at 30°C with associated convection coefficient,
	emissivity to be 10 W/m ² and 0.8 respectively. The heat loss through convection in kW is
	6.5
	7.5
	8.5
	9.5
	No, the answer is incorrect. Score: 0
	Accepted Answers: 8.5
	7) The length, diameter and the surface temperature of a steam pipeline is 30m, 0.1m and 1 point
	120°C respectively. The ambient temperature is at 30°C with associated convection coefficient,
	emissivity to be 10 W/m ² and 0.8 respectively. The heat loss through radiation in kW is
	O 4.6
	5.6
	6.6
	7.6
	No, the answer is incorrect. Score: 0
	Accepted Answers:
	6.6
	8) Which of the following statement is right in regard to thermal explosion phenomenon 1 point
	 Heat liberated during initial slow reactions is accumulated due to insufficient heat loss to the surrounding
	Chain carrying radicals are formed during thermal explosion
	The chain carrying radicals get accumulated in the system due to insufficient diffusion lossNone of these
	No, the answer is incorrect. Score: 0
	Accepted Answers: Heat liberated during initial slow reactions is accumulated due to insufficient heat loss to the surrounding
	9) When the pressure is increased, the viscosity of a fluid 1 point

IncreasesDecreasesNo effectNone of the above	
No, the answer is incorrect. Score: 0	
Accepted Answers: Increases	
10) The shear stress distribution for a fluid flowing in between 2 parallel plates at rest separated by a distance is	1 poir
 Zero at the midpoint and varies linearly with distance Maximum at the midplane and varies linearly with distance Zero at the plates and varies exponentially to mid-point Constant over the cross-section 	
No, the answer is incorrect. Score: 0	
Accepted Answers: Zero at the midpoint and varies linearly with distance	
11) The factor used to take care reaction probability depending on the certain mutual orientations of the reactant molecules is called	1 poir
Pre-exponential factor Steric factor Activation energy Probability factor	
No, the answer is incorrect. Score: 0	
Accepted Answers: Steric factor	
12Partial equilibrium approximation is applied to eliminate	1 poin
Reactions having short time of existence Species attaining steady state Reactive intermediate species None of these	
No, the answer is incorrect. Score: 0	
Accepted Answers: Reactions having short time of existence	
13 $\operatorname{Br}_2 + \operatorname{M} \stackrel{k_1}{\to} 2 \operatorname{Br} + \operatorname{M} (R.1)$ $\operatorname{Br} + \operatorname{H}_2 \stackrel{k_2}{\to} \operatorname{HBr} + \operatorname{H} (R.2)$ $\operatorname{H} + \operatorname{Br}_2 \stackrel{k_3}{\to} \operatorname{HBr} + \operatorname{Br} (R.3)$ $\operatorname{Br} + \operatorname{Br} + \operatorname{M} \stackrel{k_4}{\to} \operatorname{Br}_2 + \operatorname{M} (R.4)$	0 point
For the above set of reactions, the chain carrying reaction is/are	
R.1 R.2 R.1 and R.2 R.3 and R.4	
No, the answer is incorrect. Score: 0 Accepted Answers:	

14 Br₂ + M
$$\stackrel{k_1}{\rightarrow}$$
 2 Br + M (R.1)
Br + H₂ $\stackrel{k_2}{\rightarrow}$ HBr + H (R.2)
H + Br₂ $\stackrel{k_3}{\rightarrow}$ HBr + Br (R.3)
Br +Br + M $\stackrel{k_4}{\rightarrow}$ Br₂ + M (R.4)

For the above set of reactions, the chain initiation reaction is/are

- R.1
- R.2
- R.1 and R.2
- R.3 and R.4

No, the answer is incorrect.

Score: 0

Accepted Answers:

R.1

 $Br_2 + M \stackrel{k_1}{\rightarrow} 2 Br + M (R.1)$ 1 point $Br + H_2 \xrightarrow{k_2} HBr + H (R.2)$ $H + Br_2 \xrightarrow{k_8} HBr + Br (R.3)$ $Br + Br + M \xrightarrow{k_4} Br_2 + M (R.4)$

For the above set of reactions, the chain terminating reaction is/are

- R.3
- R.4
- R.3 and R.4
- Insufficient data

No, the answer is incorrect.

Score: 0

Accepted Answers:

R.4

16)The quasi-steady-state assumption applies to:

1 point

1 point

- Specific species and not chemical reactions
- Generally assumed for minor species
- Usually applied to species with instantaneous formation and destruction rates
- All of these

No, the answer is incorrect.

Score: 0

Accepted Answers:

All of these

17)The simplified form of hydrogen radical concentration for the above set of reactions from R.1 to R.4 in terms of C_{H2} , C_{Br} , C_{Br2} and C_{HBr} by applying steady-state approximation to C_{H3} , C_{Br} is,

$$[H] = \frac{k_2[Br][H_2]}{k_3[Br_2] + k_4[HBr]}$$

$$[H] = \frac{k_3[Br][H_2]}{k_3[Br_2] + k_4[HBr]}$$

$$[H] = \frac{k_2[Br][H_2]}{k_3[Br_2] + k_2[HBr]}$$

[H] =
$$\frac{k_1[Br][H_2]}{k_3[Br_2] + k_4[HBr]}$$

No, the answer is incorrect. Score: 0

Accepted Answers:
$$[H] = \frac{k_2[Br][H_2]}{k_3[Br_2] + k_4[HBr]}$$

Previous Page

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of

In association with

Funded by

Government of India Ministry of Human Resource Development

Powered by

