NPTEI reviewer1@nptel.iitm.ac.in ▼ ## Courses » Fundamentals Of Combustion (Part 1) Announcements Course Ask a Question Progress Mentor ## Unit 6 - Week 5 : Chemical Kinetics | Course
outline | Week 5 Assessment 5 | | |---|--|--------------| | | The due date for submitting this assignment has passed. Due on 2018-03-14 | , 23:59 IST. | | ow to access
ne portal? | Submitted assignment | | | Week 1 : ntroduction to Combustion Week 2 : Thermodynamics of combustion | 1) Determine the mean speed (m/s) for CO molecules at 400°C. 713.3 632.2 831.3 532.2 | 1 poin | | Veek 3 : | No, the answer is incorrect. Score: 0 | | | Week 4 :
Chemical
Equilubrium and
Kinetics | Accepted Answers: 713.3 2) Determine the most probable speed (m/s) for CO molecules at 400°C | 1 point | | Veek 5 :
Chemical
Cinetics | 731.3
632.2
831.3
532.2 | | | Lecture 21 Collision Theory | No, the answer is incorrect. | | | Lecture 22 | Score: 0 | | | Collision theory (Contd) | Accepted Answers: 632.2 | | | Lecture 23 Collision frequency of molecules | 3) Which of the following statements are true for catalyzed reactions? Catalyzed reactions lower the activation energy. | 1 point | | Lecture 24
Specific
reaction rate
and Arrhenius
law | Catalyzed reactions do not take part in reactions Catalyzed reaction take part in reaction process Both (a) and (b) No, the answer is incorrect. | | | Lecture 25 First
order, Second
order and Third-
order reactions | Score: 0 Accepted Answers: Both (a) and (b) | | | Quiz : Week 5
Assessment 5 | 4) Determine activation energy (kJ/mol) for the chemical reaction for the experimental conditions | 3 points | Week 5Assessment 5 | Fundamentals Of Combustion (Part 1) Unit 6 - Week 5 : Chemical Kinetic | | |--|--| | $2 X_2Y \rightarrow 2X_2 + Y_2$ | | | | | | Solutions | $2 X_2 Y \rightarrow 2X_2 + Y_2$ | | |---------------------------------------|---|-----------------| | ○ Week 5 | T(K) k (Rate constant) m³/mol s | | | Feedback | 300 0.25×10 ⁻⁸ | | | Week 6 : Types of reaction and | 700 0.85×10 ⁻² | | | Introduction to Physics of combustion | 35.5 | | | | 25.5 | | | Week 7 :
Transport
Phenomena | 45.555.5 | | | Week 8: | No, the answer is incorrect. Score: 0 | | | Conservation
Equations | Accepted Answers: 45.5 | | | | 5) The rate constant of the reaction increases by, | 1 poin | | | increasing the temperature | | | | increasing the concentration of reactantsusing a catalyst | | | | None of the above | | | | No, the answer is incorrect. Score: 0 | | | | Accepted Answers: | | | | increasing the concentration of reactants | | | | 6) Law of mass action holds good for | 1 poin | | | First order reactions | | | | Second order reactions | | | | Elementary reactions | | | | Global reactions | | | | No, the answer is incorrect. Score: 0 | | | | Accepted Answers: Elementary reactions | | | | 7) According to the collision theory, the chemical reaction occurs successfully only when i | t 1 poin | | | collides with a proper orientation determined by steric factor | | | | possess energy greater than the threshold energy | | | | reactant molecules must be very reactive | | | | Both (a) and (b) | | | | No, the answer is incorrect. Score: 0 | | | | Accepted Answers: Both (a) and (b) | | | | 8) In a first-order reaction, the rate of reactant species | 1 poin | | | remains constant with time | | | | decreases with time | | | | decreases exponentially with time | | | | None of the above | | No, the answer is incorrect. Score: 0 ## Accepted Answers: decreases exponentially with time | 9) In a reaction, $2H_2O$ à $2H_2(I) + O_2(g)$ the average rate of disappearance of H_2O over 2 point the time period from $t = 0$ to $t = 500$ min is found to be | |---| | $^{\circ}$ 4 ×10 ⁻⁵ mole/min. What is the rate of appearance of O ₂ over the same time period in mol/min? | | 6×10⁻⁵ 4×10⁻⁵ 8×10⁻⁵ 2×10⁻⁵ | | No, the answer is incorrect. Score: 0 | | Accepted Answers: 2×10^{-5} | | 10) The decomposition of $2H_2O$ à $2H_2(I) + O_2(g)$ is first order in H_2O . It was found that an 2 point initial concentration of 0.25 dropped to 0.05 in 230 s during the experiment. What is the value of the rate constant? | | 6.0×10⁻³ s⁻¹ 4.5×10⁻³ s⁻¹ 5.5×10⁻³ s⁻¹ | | \circ 7.0×10 ⁻³ s ⁻¹ | | No, the answer is incorrect. Score: 0 | | Accepted Answers: $7.0 \times 10^{-3} \text{ s}^{-1}$ | | 11)Which of the following is wrongly stated regarding activation energy, 1 poi | | Activation energy can be negative. Activation energy is the energy above the threshold level for a reaction. Activation energy can be determined from Arrhenius plots. Catalysts lower the activation energy for reactions. | | No, the answer is incorrect. Score: 0 | | Accepted Answers: Activation energy can be negative. | | 12)Which of the following is wrongly stated for Arrhenius equation 1 poi | | When activation energy increases, the reaction rate becomes faster With increase in temperature, reaction rate becomes faster. Smaller the fraction of activation energy to temperature faster the reaction rate Predict the rate of reaction at a different temperature if activation energy and the reaction rate at another temperature is known. | | No, the answer is incorrect. Score: 0 | | Accepted Answers: When activation energy increases, the reaction rate becomes faster | | 13)Which of the following are the properties of compact notation, 1 poi | | Sparse coefficient matrix when involving a large number of species. This has been developed to represent both the mechanism and the individual species production rates. | | It is particularly useful to solve chemical kinetics using computerAll of the above | | No, the answer is incorrect. Score: 0 Accepted Answers: | All of the above 14 Hydrogen Iodide with an initial concentration of 70 mol/m 3 is decomposed to H $_2$ and I $_2$ 3 points molecules as per the following reaction 2HI 12 H $_2$ H $_2$ It is found that 20% of the initial hydrogen iodide is decomposed in 45s. The half-life of the reaction is, - 180.1 - 210.1 - 310.2 - 440.1 No, the answer is incorrect. Score: 0 **Accepted Answers:** 180.1 Previous Page End © 2014 NPTEL - Privacy & Terms - Honor Code - FAQs - A project of In association with Funded by Government of India Ministry of Human Resource Development Powered by