

NPTEL

reviewer1@nptel.iitm.ac.in ▼

Courses » Fundamentals Of Combustion (Part 1)

Announcements Course Ask a Question Progress Mentor

Unit 3 - Week 2 : Thermodynamics of combustion

Course outline	Week 2 : Assessment 2			
	The due date for submitting this assignment has passed. Due on 2018-02-21, 23:59 IST.			
How to access the portal?	Submitted assignment			
Week 1 : Introduction to Combustion	1) A heat engine working on thermodynamic cycle draws 250 kJ of heat energy from a source <i>2 points</i> at 1000 K per cycle and rejects a certain amount of heat energy at 200K per cycle. Which of the following statement is correct			
Week 2 : Thermodynamics of combustion • Lecture 6 :	 Amount of heat energy rejected must be 50 kJ Amount of heat rejected must be less than 50kJ Amount of heat energy rejected must be greater than or equal to 50 kJ The given data is insufficient to conclude. 			
Thermodynamics of combustion	No, the answer is incorrect.			
• Lecture 7 : Thermodynamics of combustion(Contd)	Score: 0 Accepted Answers: Amount of heat energy rejected must be greater than or equal to 50 kJ			
Lecture 8 : Laws of thermodynamics and Stoichiometry	2) The statement of first law of thermodynamics for an isolated system is Conservation of momentum Conservation of energy Conservation of heat			
Lecture 9 : Stoichiometric calculations for air-gas mixture	Conservation of work No, the answer is incorrect. Score: 0			
 Lecture 10 : Mixture fraction calculation for diffusion flames 	Accepted Answers: Conservation of energy 3) 1.5 kg of water at 80°C is mixed thoroughly with 3 kg of water at 50°C in a perfectly 3 points			
Quiz : Week 2 : Assessment 2	insulated tank. Assuming the specific heat of water to be constant (4.18 kJ/kgK) the entropy generated in J/K during this process is			
• Week 2 : Assessment 2 Solutions	0 16.6 126.1			
• Week 2 Feedback	512.6			
Week 3 : Themochemistry	No, the answer is incorrect. Score: 0			
Week 4:	Accepted Answers: 16.6			

Chemical

16/05/2018

05/2018	Fundamentals Of Combustion (Part 1) Unit 3 - Week 2 : Thermodynamics of combustion
Equilubrium and Kinetics	4) An ideal gas expands in an adiabatic friction-less nozzle from the inlet conditions of 15 bar 2 points 1000K to the ambient pressure of 1 bar at the outlet. The specific heat C_p for gas in 1 kJ/kg and the
Week 5 :	specific heat ratio y=1.4. Neglecting inlet kinetic energy, the velocity of the gas in m/s at nozzle exit is
Chemical	38
Kinetics	538
Week 6 : Types	838
of reaction and	0 1038
Introduction to Physics of	No the engues is incorrect
combustion	No, the answer is incorrect. Score: 0
	Accepted Answers:
Week 7 : Transport	1038
Phenomena	5) Air at the rate of 125 g/s enters at 290 K with a velocity of 15 m/s and leaves at 325 K with a 2 points
Week 8 :	velocity of 18 m/s flows steadily into an air heater. The heating is accomplished in this air
Conservation	heater with help of a burner. Determine power in Watts for this ideal burner? Assume C_p =1005 J/kg K.
Equations	2403
	5406
	3404
	0 4403
	No, the answer is incorrect. Score: 0
	Accepted Answers:
	4403
	6) Determine the air-fuel ratio on a mass basis for stochiometric combustion of liquid n-dodecane ($C_{12}H_{26}$)
	14.94 29.88 56.64 88.06
	No, the answer is incorrect. Score: 0
	Accepted Answers:
	14.94
	7) Estimate lower heating value of liquid ethanol in J per kg of C_2H_5OH , given the heat 1 point of formation of C_2H_5OH , CO_2 , $H_2O(g)$, are -278000, -393546, and -241845 J/mol and latent heat of vaporization is 44010 J/mol.
	29910
	26840
	29630
	28610
	No, the answer is incorrect. Score: 0
	Accepted Answers: 26840
	8) Estimate higher heating value of liquid ethanol in J per kg of C ₂ H ₅ OH, given the heat of 2 points
	formation of C ₂ H ₅ OH, CO ₂ , H ₂ O(g) are -278000, -393546, and -241845 J/mol respectively and latent
	heat of vaporization is 44010 J mol ⁻¹
	29910
	29840
	29630

29710		
No, the answer is incorrect. Score: 0		
Accepted Answers: 29710		
9) If methanol is burnt with 200% stoichiometric air, obtain corresponding product material fractions for CO_2 , H_2O , N_2 , O_2 respectively.	ole	3 points
0.06,0.13,0.71,0.1 0.06,0.09,0.75,0.1 0.06,0.09,0.65,0.2 0.09,0.06,0.71,0.14		
No, the answer is incorrect. Score: 0		
Accepted Answers: 0.06,0.13,0.71,0.1		
10)An aviation gas turbine engine utilizing liquid n-dodecane as the fuel operates wit fuel ratio of 20 (mass basis). Determine the corresponding equivalence ratio.	h an air-	2 points
0.25 0.35 0.50 0.75		
No, the answer is incorrect. Score: 0		
Accepted Answers: 0.75		

Previous Page

End

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of

In association with

Funded by

Government of India Ministry of Human Resource Development

Powered by

