NPTEL reviewer1@nptel.iitm.ac.in ▼ ## Courses » Fundamentals Of Combustion (Part 1) Announcements Course Ask a Question Progress Mentor ## Unit 3 - Week 2 : Thermodynamics of combustion | Course outline | Week 2 : Assessment 2 | | | | |--|--|--|--|--| | | The due date for submitting this assignment has passed. Due on 2018-02-21, 23:59 IST. | | | | | How to access the portal? | Submitted assignment | | | | | Week 1 :
Introduction to
Combustion | 1) A heat engine working on thermodynamic cycle draws 250 kJ of heat energy from a source <i>2 points</i> at 1000 K per cycle and rejects a certain amount of heat energy at 200K per cycle. Which of the following statement is correct | | | | | Week 2 : Thermodynamics of combustion • Lecture 6 : | Amount of heat energy rejected must be 50 kJ Amount of heat rejected must be less than 50kJ Amount of heat energy rejected must be greater than or equal to 50 kJ The given data is insufficient to conclude. | | | | | Thermodynamics of combustion | No, the answer is incorrect. | | | | | • Lecture 7 :
Thermodynamics
of
combustion(Contd) | Score: 0 Accepted Answers: Amount of heat energy rejected must be greater than or equal to 50 kJ | | | | | Lecture 8 : Laws of thermodynamics and Stoichiometry | 2) The statement of first law of thermodynamics for an isolated system is Conservation of momentum Conservation of energy Conservation of heat | | | | | Lecture 9 :
Stoichiometric
calculations for
air-gas mixture | Conservation of work No, the answer is incorrect. Score: 0 | | | | | Lecture 10 : Mixture fraction calculation for diffusion flames | Accepted Answers: Conservation of energy 3) 1.5 kg of water at 80°C is mixed thoroughly with 3 kg of water at 50°C in a perfectly 3 points | | | | | Quiz : Week 2 :
Assessment 2 | insulated tank. Assuming the specific heat of water to be constant (4.18 kJ/kgK) the entropy generated in J/K during this process is | | | | | • Week 2 :
Assessment 2
Solutions | 0
16.6
126.1 | | | | | • Week 2
Feedback | 512.6 | | | | | Week 3 :
Themochemistry | No, the answer is incorrect. Score: 0 | | | | | Week 4: | Accepted Answers: 16.6 | | | | Chemical ## 16/05/2018 | 05/2018 | Fundamentals Of Combustion (Part 1) Unit 3 - Week 2 : Thermodynamics of combustion | |-------------------------------|---| | Equilubrium and
Kinetics | 4) An ideal gas expands in an adiabatic friction-less nozzle from the inlet conditions of 15 bar 2 points 1000K to the ambient pressure of 1 bar at the outlet. The specific heat C_p for gas in 1 kJ/kg and the | | Week 5 : | specific heat ratio y=1.4. Neglecting inlet kinetic energy, the velocity of the gas in m/s at nozzle exit is | | Chemical | 38 | | Kinetics | 538 | | Week 6 : Types | 838 | | of reaction and | 0 1038 | | Introduction to
Physics of | No the engues is incorrect | | combustion | No, the answer is incorrect. Score: 0 | | | Accepted Answers: | | Week 7 :
Transport | 1038 | | Phenomena | 5) Air at the rate of 125 g/s enters at 290 K with a velocity of 15 m/s and leaves at 325 K with a 2 points | | Week 8 : | velocity of 18 m/s flows steadily into an air heater. The heating is accomplished in this air | | Conservation | heater with help of a burner. Determine power in Watts for this ideal burner? Assume C_p =1005 J/kg K. | | Equations | 2403 | | | 5406 | | | 3404 | | | 0 4403 | | | | | | No, the answer is incorrect. Score: 0 | | | Accepted Answers: | | | 4403 | | | 6) Determine the air-fuel ratio on a mass basis for stochiometric combustion of liquid n-dodecane ($C_{12}H_{26}$) | | | 14.94
29.88
56.64
88.06 | | | | | | No, the answer is incorrect. Score: 0 | | | Accepted Answers: | | | 14.94 | | | 7) Estimate lower heating value of liquid ethanol in J per kg of C_2H_5OH , given the heat 1 point of formation of C_2H_5OH , CO_2 , $H_2O(g)$, are -278000, -393546, and -241845 J/mol and latent heat of vaporization is 44010 J/mol. | | | 29910 | | | 26840 | | | 29630 | | | 28610 | | | No, the answer is incorrect. Score: 0 | | | Accepted Answers: 26840 | | | 8) Estimate higher heating value of liquid ethanol in J per kg of C ₂ H ₅ OH, given the heat of 2 points | | | formation of C ₂ H ₅ OH, CO ₂ , H ₂ O(g) are -278000, -393546, and -241845 J/mol respectively and latent | | | heat of vaporization is 44010 J mol ⁻¹ | | | 29910 | | | 29840 | | | 29630 | | | | | 29710 | | | |--|-----------|----------| | No, the answer is incorrect.
Score: 0 | | | | Accepted Answers: 29710 | | | | 9) If methanol is burnt with 200% stoichiometric air, obtain corresponding product material fractions for CO_2 , H_2O , N_2 , O_2 respectively. | ole | 3 points | | 0.06,0.13,0.71,0.1
0.06,0.09,0.75,0.1
0.06,0.09,0.65,0.2
0.09,0.06,0.71,0.14 | | | | No, the answer is incorrect. Score: 0 | | | | Accepted Answers: 0.06,0.13,0.71,0.1 | | | | 10)An aviation gas turbine engine utilizing liquid n-dodecane as the fuel operates wit fuel ratio of 20 (mass basis). Determine the corresponding equivalence ratio. | h an air- | 2 points | | 0.25
0.35
0.50
0.75 | | | | No, the answer is incorrect. Score: 0 | | | | Accepted Answers: 0.75 | | | | | | | Previous Page End © 2014 NPTEL - Privacy & Terms - Honor Code - FAQs - A project of In association with Funded by Government of India Ministry of Human Resource Development Powered by