	reviewer2@n	ptel.iitm.ac.i
ourses » Aircraft	Dynamic Stability & Design of Stability Augmentation System	
lnit 6 - We		rogress
Course outline	Assignment 5	i
How to access the portal	The due date for submitting this assignment has passed. Due on 2016-08-23, 2 As per our records you have not submitted this assignment.	
Week 1	1) If the derivatives have the usual sign, then the condition for spiral mode to be stable is	1 poin
Week 2		
Week 3		
Week 4	No, the answer is incorrect.	
Week 5	Score: 0	
 Lecture 25 Lateral Directional Stability Derivatives 	Accepted Answers: 2) To make spiral mode stable a designer should Statement 1: Increase Dihedral Effect Statement 2: Increase Yaw damping	1 poir
 Lecture 26 Lateral Directional Stability Derivatives Cont 	 Statement 1 is True, Statement 2 is False Statement 1 is False, Statement 2 is True Both are True Both are False 	
 Lecture 27 Perturbed Equation of Motion for Lateral Dynamics 	No, the answer is incorrect. Score: 0 Accepted Answers: Both are True	
 Lecture 28 Modes of Lateral 	3) Determine the stability of the characteristic equation given by	2 point
Directional Dynamics	 Stable Unstable 	
 Lecture 29 Spiral and Dutch Roll 	 Marginally Stable None of the above 	
modes Approximation	No, the answer is incorrect. Score: 0	
 Lecture 30 Routh–Hurwitz Stability Criterion 	Accepted Answers: Unstable	
Quiz : Assignment 5	4) Determine the range of K such that the characteristic equation $P(s)$ stable	/ 15 2 poin

26/07/2020

/2020	Aircraft Dynamic Stability & Design of Stability Augmentation System Unit 6 - Week 5	
 Solutions for Assignment 5 		
Week 6		
Week 7	No, the answer is incorrect.	
Week 8	Score: 0 Accepted Answers:	
		f
	5) Lateral directional matrix is given by 2 por	
	The characteristic equation is given by	
		in
	No, the answer is incorrect. Score: 0	8
	Accepted Answers:	
	6) The roots of the characteristic equation derived from Ques. 5 are 2 por	ints
	No, the answer is incorrect. Score: 0	
	Accepted Answers:	
	Previous Page End	

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

Funded by

Government of India Ministry of Human Resource Development

Powered by

