Unit 11 - Week 9

Course outline	Assignment 9	
How does an NPTEL online course work?	The due date for submitting this assignment has passed. Due on 2020-11-18,	23:59 IST.
Week 0	As per our records you have not submitted this assignment.	
	 Which of the following Constraints is/are depend(s) only on Wing Loading, (W/S)? 	1 poin
Week 1	☐ Instantaneous Turn Rate ☐ Landing Distance	
Week 2	Climb Gradient	
Neek 3	Sustained Turn Rate Stalling Speed	
Veek 4	No, the answer is incorrect. Score: 0	
Veek 5	Accepted Answers: Instantaneous Turn Rate	
Veek 6	Landing Distance Stalling Speed	
Veek 7		
Veek 8	Which of the following Constraints is/are depend(s) only on T/W? Absolute Ceiling	1 poin
Veek 9	☐ Missed Approach Gradient	
Lecture 59 : Constraint Analysis- Introductory Remarks	Landing Distance Climb Gradient	
Lecture 60 : Constraint	No, the answer is incorrect. Score: 0	
Analysis- Transport Aircraft- Part-01	Accepted Answers: Missed Approach Gradient	
Clecture 61 : Constraint	Climb Gradient	
Analysis- Transport Aircraft- Part-02	3) T/W for a Sustained Turn as a function of Wing Loading is:	1 poin
Constraint Analysis of	$T = C_{Dmin} + T_{C}(n)(W)$	
Transport Aicraft- Part 01	$\frac{1}{W} = q \left[\frac{c_{Dmin}}{(W/c)} + k \left(\frac{n}{q} \right) \left(\frac{v}{S} \right) \right]$	
Lecture 63 : Tutorial on Constraint Analysis of	$T = \left[C_{Dmin} + I_{r} \binom{n}{2} \binom{W}{1} \right]$	
Transport Aicraft- Part 02 Lecture 64 : Constraint	$\frac{1}{W} = q \left[\frac{q_{\text{Dmin}}}{(W/S)} + k \left(\frac{n}{q} \right) \left(\frac{N}{S} \right) \right]$	
Analysis- Military Aircraft	$\frac{T}{T} = \left[\frac{C_{Dmin}}{C_{Dmin}} + k \left(\frac{n}{T}\right) \left(\frac{W}{T}\right)\right]$	
Lecture 65 : Tutorial on Constraint Analysis of Military	$\overline{W} = \left[\frac{\overline{W}_{s}}{\overline{W}_{s}} + \kappa \left(\frac{\overline{q}}{q} \right) \left(\frac{\overline{s}}{s} \right) \right]$	
Aicraft- Part 01 Lecture 66 : Tutorial on	$T \left[C_{Dmin}, C_{N}(W) \right]$	
Constraint Analysis of Military Aicraft- Part 02	$\frac{T}{W} = \left \frac{C_{Dmin}}{(W/c)^2} + k \left(\frac{n}{q} \right) \left(\frac{W}{S} \right) \right $	
Lecture 67 : Refined Sizing	No, the answer is incorrect.	
Lecture 68 : Tutorial on Refined	Score: 0 Accepted Answers:	
Sizing of Jet Fighter Aircraft Quiz: Assignment 9	$\frac{T}{W} = q \left[\frac{C_{Dmin}}{(W/_S)} + k \left(\frac{n}{q} \right)^2 \left(\frac{W}{S} \right) \right]$	
Assignment-9 Solutions	$W^{-1}[(W/S)^{-1}(q)^{-1}(S)]$	
Weekly feedback	4) The Design Point in a Constraint Diagram is chosen as a point that corresponds to?	1 poin
Download Videos	O Lowest T/W and Lowest W/S	
Veek 10	Lowest T/W but Highest W/S Highest T/W and Highest W/S	
Veek 11	O Highest T/W but Lowest W/S	
Veek 12	No, the answer is incorrect. Score: 0 Accepted Answers:	
ive Session	Lowest T/W but Highest W/S	
Text Transcripts	5) Calculate the Wing Loading in kg/sq.m, meeting the requirement of Stall Velocity of 30 m/s, with the maximum lift coefficient 1.5 at sea-level under	ISA Conditions
	Hint	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: (Type: Range) 84,85	
	(Type: Nange) 04,00	1 poin
	6) Which of the following parameters is/are the Raymer's Big Six parameters?	1 poin
	Taper Ratio	
	☐ Wing Sweep Angle ☐ Aspect Ratio	
	Zero-Lift Drag Coefficient	
	☐ Thrust Loading ☐ Wing Loading	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: Taper Ratio	
	Wing Sweep Angle Aspect Ratio	
	Thrust Loading Wing Loading	
	7) Calculate the minimum value of T/W, if C_{Do} = 0.012, Climb Gradient (G) = 0.15, Wing Aspect Ratio = 7, and Oswald efficiency factor (e) = 0.87.	
	Hint	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: (Type: Range) 0.175,0.250	
		1 poin
	8) According to FAR25, what is the second stage climb gradient for the twin engine powered aircraft?	1 poin
	○ 3.0 % ○ 2.7 %	
	O 2.4 %	
	O 2.2 % No, the answer is incorrect.	
	Score: 0 Accepted Answers:	
	2.4 %	
	9) Second stage climb gradient depends upon	1 poin
	☐ Thrust-Weight Ratio	
	□ Number of Engines □ Wing Loading	
	Lift-Drag Ratio	

No, the answer is incorrect. Score: 0

Accepted Answers: Thrust-Weight Ratio Number of Engines Lift-Drag Ratio