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Two-dimensional Autonomous Dynamical Systems

A two-dimensional (2D) autonomous dynamical system in continuous time is spec-
ified by a pair of real variables x and y whose time evolution is specified by two
coupled, first-order, ordinary differential equations of the form

ẋ = f(x , y), ẏ = g(x , y).

Here the overhead dots stand for time derivatives, and f and g are, in general,
real-valued nonlinear functions of their arguments. It is convenient to combine the
evolution equations for x and y into the single vector equation

ẋ = f(x), where x = (x , y) and f = (f , g).

The dynamical behaviour of such a system is essentially governed by the equilibrium
points (or critical points) of the system. These are the points in the (x , y) plane at
which the vector field f(x) vanishes, namely, the roots of the simultaneous equations

f(x , y) = 0 and g(x , y) = 0.

Recall the classification of the critical points (CP’s) in a 2D system, for which
purpose we proceed as follows. If (x , y) is a CP, we first change variables to
u = x − x , v = y − y , so that the CP is at the origin in terms of the variables
(u , v). We then linearize the system in the neighbourhood of the critical point to
get (

u̇
v̇

)
≈ L

(
u
v

)
, where L =

[
∂(f , g)
∂(x , y)

]
(x , y)

is the Jacobian matrix evaluated at the CP Then:

• If both the eigenvalues of L are real and positive, the CP is an unstable
node.

• If both the eigenvalues of L are real and negative, the CP is an asymptoti-
cally stable node.

• If they are real but differ in sign, the CP is a saddle point.

• If they are a complex conjugate pair with a positive real part, the CP is an
unstable spiral point.

• If they are a complex conjugate pair with a negative real part, the CP is an
asymptotically stable spiral point.

• If they are pure imaginary, the CP is a stable centre.

• Finally, if one or both eigenvalues of L vanish, the CP is a degenerate or
higher-order one, and we must go beyond linearization. That is, lineariza-
tion is not guaranteed to specify, in a unique manner, the precise nature of
the flow in the neighbourhood of the CP In fact, this difficulty crops up even
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if the real part of the eigenvalues alone vanishes, leaving a pure imaginary
part, as in the case of a centre. This is a general feature, valid even for
higher-dimensional systems. Whenever the real part of any eigenvalue of the
Jacobian matrix vanishes, we must examine the system more carefully because
linearization is no longer a reliable guide to the actual flow.

1. To start with, consider the 1-dimensional system ẋ = f(x) where x, f ∈ R.
(The phase space is just the x-axis.) Find the critical points and phase portrait for
each of the following functions f(x):

(a) x3 (b) sin x (c) cos x2 (d) sin2 x (e) sinh x (f) (x2 − 1)2 .

2. Find the locations and nature of the critical points for the 2-dimensional dy-
namical systems given below, and sketch the phase portraits qualitatively.

(a) f = (2x , x+ 2y).

(b) f = (x+ y − 2 , x− y).

(c) f = (−2x , x− 2y).

(d) f = (y , −x+ x2).

(e) f = (y , 4− 3x− x2).

In (d) and (e), we can regard x as the coordinate of a point mass moving in a
potential V (x). (Why?) Sketch V (x) in these cases.

3. The Lotka-Volterra predator-prey model is given by(
ẋ
ẏ

)
=
(
a x− αxy
−b y + β xy

)
,

where x , y ≥ 0, and a , α , b and β are positive constants.

(a) Find the critical points and their types.

(b) Show that a ln y + b ln x− α y − β x is a constant of the motion.

4. Consider the general linear 2D system(
ẋ
ẏ

)
=
(
a b
c d

) (
x
y

)
.

(a) Show that (0, 0) is a centre if and only if a+ d = 0 and ad− bc > 0.

(b) Show that the phase trajectories are then given by cx2+2dxy−by2 = constant.

5. The relativistic linear harmonic oscillator is given by the equation of
motion

d

dt

(
m0 v√

1− v2/c2

)
+ kx = 0 , where v = ẋ and k > 0.

Show that the first integral of the motion is

m0 c
2√

1− v2/c2
+

1
2
kx2 = C,
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wherev C is a constant whose value is fixed by the initial conditions. (For instance,
if these are x = a and v = 0 at t = 0, then C = m0c

2 + 1
2kx

2.) What does C
represent physically?

6. A Hamiltonian system: Recall that, in classical mechanics, a Hamiltonian
system with n degrees of freedom is specified by n generalized coordinates
(q1 , . . . , qn) and n canonically conjugate momenta (p1 , . . . pn). Together,
these comprise 2n dynamical variables. The phase space of such a system is therefore
always even dimensional. ‘Canonically conjugate’ means that the Poisson bracket
relations

{qi , qj} = 0 , {pi , pj} = 0 , and {qi , pj} = δij

hold good, where δij is the Kronecker delta. The time evolution of the entire set
of 2n variables is governed by a single scalar function H(q1 , . . . , qn , p1 , . . . , pn)
called the Hamiltonian of the system, according to Hamilton’s equations of motion,
namely,

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi
, where 1 ≤ i ≤ n.

The minus sign in the second set of equations is crucial. It is straightforward to
verify that the total time derivative dH/dt vanishes identically, i. e., H(q , p) itself
is a constant of the motion.

Show that the 2-dimensional system

ẋ = −y + xy , ẏ = x+
1
2

(x2 − y2)

is a Hamiltonian system specified by a certain Hamiltonian function H(x , y), such
that ẋ = ∂H/∂y and ẏ = −∂H/∂x . Is H unique? What if we had required that
ẋ = −∂H/∂y , ẏ = +∂H/∂x ? Can the system arise as the set of equations of mo-
tion of a particle moving in one dimension in some potential?

7. A gradient system: A gradient system is again one for which the time evolu-
tion of the entire set of dynamical variables is governed by a single scalar function
φ(x1 , x2 , . . . , xn), but in a manner that is somewhat simpler than the case of a
Hamiltonian system. The dimensionality n of the system could be either even or
odd. We have in this case

ẋi =
∂φ

∂xi
, where 1 ≤ i ≤ n.

The structure of gradient systems is nowhere near as intricate as that of Hamiltonian
systems.

(a) Show that the 2D system

ẋ = −x+ xy , ẏ = −y +
1
2

(x2 − y2)

is a gradient system, i.e., there is a scalar function φ(x, y) such that ẋ =
∂φ/∂x , ẏ = ∂φ/∂y .

(b) Can this system also arise as a Hamiltonian system? Can a gradient system
be a Hamiltonian system under any circumstances?

(c) For a 2D Hamiltonian system, show that the solution curves (i.e., the phase
trajectories) are level curves H(x, y) = constant ; while, for a 2D gradient
system, the solution curves cross the level curves of φ(x, y) at right angles.
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8. Oscillator with an inflection point: A particle of unit mass moving on the
x-axis has the Hamiltonian (in suitable units)

H(x , p) =
1
2
p2 +

1
3
x3 +

1
4
x4 .

(a) Find the equilibrium points in the phase plane and classify them.

(b) Sketch the phase portrait of the system.

9. Generalized nonlinear oscillator: The equation of motion of a nonlinear
oscillator is found to be ẍ+ g(x) = 0 , where x lies in the range [−A , A] , and g(x)
is a given, continuous, differentiable, odd function of x with g ′(x) > 0.

(a) Show that this is a Hamiltonian system (find H explicitly).

(b) Determine the location, nature and stability of the critical point(s) of the
system.

(c) Find the time period of oscillation for motion with the initial conditions
x(0) = A , ẋ(0) = 0.

10. Separatrix solution for the simple pendulum: A simple pendulum is
a rigid rod of length l and negligible mass, suspended from one end with a bob of
mass m at the other end. The Hamiltonian of the simple pendulum is given by

H (θ , pθ) =
p2
θ

2ml2
+mg l (1− cos θ) ,

where θ is the angular displacement of the bob from the vertical. Let E denote the
total energy of the bob (a constant of the motion). When 0 < E < 2mgl, the motion
of the bob is oscillatory (librational motion), while for E > 2mgl the motion is
rotational. E = 2mgl corresponds to phase trajectories that are separatrices that
separate the phase trajectories corresponding to librational and rotations motion.

(a) Show that the time period of oscillation tends to infinity on a separatrix.

(b) Show that the explicit solution θ(t) corresponding to motion on the separatrix
on which θ(−∞) = −π, θ(0) = 0, θ(∞) = +π is given by

θ(t) = 4 tan−1(eω0t)− π,

where ω0 =
√
g/l . (Recall that this is also the frequency of small oscillations

about the equilibrium position.)

(c) Sketch θ(t) and the angular velocity θ̇(t) as functions of t (where −∞ < t <
∞). The ‘lump-like’ shape of θ̇(t) as a function of time is related to the con-
cept of instantons in certain nonlinear field theories.

11. A family of isochronous oscillators: It is well known that the time period
of a simple harmonic oscillator is independent of its amplitude, and hence indepen-
dent of its total energy. Contrary to the naive belief that this property is unique
to motion in a parabolic potential, it turns out that oscillatory motion in a whole
family of potentials is also independent of the amplitude of oscillation (or the total
energy of the oscillator).
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A particle of unit mass moves on the x-axis in the force field

F (x) = −k x+
a

x3

where k and a are positive constants.

(a) Sketch the potential V (x) as a function of x.

(b) Find the equilibrium points and sketch the phase portrait of the particle.

(c) Show that, if the energy E of the particle exceeds
√
ka , the particle oscillates

either between the points x1 and x2, or between the points −x2 and −x1,
where

x1 =
(E −√E2 − ka

k

)1/2

and x2 =
(E +

√
E2 − ka
k

)1/2

.

(These are called the turning points of the motion.)

(d) Show that, for any given E >
√
ka , the time period of oscillation of the parti-

cle about its equilibrium position is given by T = π/
√
k. This is independent

of E (and the parameter a), and is one half the time period (2π/
√
k) of a

particle of unit mass in the simple harmonic oscillator potential 1
2kx

2.

12. LC circuit with nonlinear inductor: A lossless oscillatory LC circuit has
an inductor with a ferromagnetic core. The net flux through the core is φ(I), a
nonlinear function of the instantaneous current I in the circuit (I ≡ q̇ where q is
the instantaneous charge on C).

(a) Write down the equation of motion for q.

(b) Show that q2/(2C) +
∫
φ ′(I) I dI is a constant of the motion. (This is the

total energy of the system.)

(c) Given that φ(I) is an odd function of I, what is the nature of the CP in the
(q , I) plane? If φ(I) = α I + β tan−1(γ I), where α , β and γ are positive
constants, find the phase trajectories of the system.

13. Clock with escapement: The pendulum of a clock is energized by a spring-
and-escapement mechanism that imparts an impact to the pendulum whenever
it passes through its equilibrium position. The impact gives an instantaneous,
constant increment Ω to the angular velocity of the pendulum. The equation of
motion of the pendulum (in the absence of the driving force) is θ̈ + γ θ̇ + ω2 θ = 0
where γ is a friction constant, and γ2 � ω2 . Assume that the angular displacement
of the pendulum is initially given by θ(t) = θ0 e

−γt/2 sin ω0t, so that θ(0) = 0 and
θ̇(0) = ω0 θ0 . The first time it receives an impact from the escapement mechanism
is at t = π/ω0. The periodic impacts given by the driving force compensate for the
damping due to friction, and enable the periodic motion to be maintained.

(a) What is the value of Ω required to maintain a steady periodic motion of the
pendulum?

(b) Sketch the corresponding phase trajectory.
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14. The damped simple harmonic oscillator: Consider the damped linear
harmonic oscillator of unit mass, given by the system of equations

ẋ = v , v̇ = −ω2
0 x− γ v ,

where γ is a positive constant. It is clear that (0 , 0) is no longer a centre in
the (x , v) phase plane, but rather an asymptotically stable spiral point, provided
ω0 >

1
2γ (i.e., the oscillator is underdamped). The phase trajectories are inward

spirals tending to the origin.

(a) Show that the phase trajectories are given by the equation

v2 + γ x v + ω2
0 x

2 = C exp
{ γ
ω

tan−1
( v

ω x
+

γ

2ω

)}
,

where ω =
(
ω2

0 − 1
4γ

2
)1/2 and C is a constant. [Hint: Change variables from

v to u = v/x.] The fact that a non-algebraic (or transcendental) function like
the arctan function appears in the constant of the motion (COM) represented
by the left-hand side of the equation above indicates that the COM is not an
isolating integral in this case.

(b) What sort of critical point is the origin in the phase plane, in the critically
damped (ω0 = 1

2γ) case? Show that the phase trajectories are given, in this
case, by

2v + γx = C exp
{
− γx

2v + γx

}
.

(c) What sort of critical point is the origin in the phase plane, in the overdamped
(ω0 <

1
2γ) case? It is convenient, now, to define the shifted friction constant

γs = (γ2 − 4ω2
0)1/2. Show that the phase trajectories are now given by

v2 + γ x v + ω2
0 x

2 = C
{2v + (γ − γs)x

2v + (γ + γs)x

}γ/γs

.

15. Generalized nonlinear oscillator with damping: The equation of motion
of an undamped linear harmonic oscillator of unit mass, or that of any dynamical
system modelled by the linear harmonic oscillator, is ẍ + ω2

0 x = 0. The effects of
dissipation and/or nonlinearities may be incorporated by modifying the equation of
motion to read

ẍ+ f(x , ẋ) + ω2
0 x = 0.

(a) What is the condition that must be obeyed by the function f(x , ẋ), such that
the motion continues to is a stable, periodic one with a given time period T?

(b) Hence show that an LRC series circuit with a given initial amount of electric
and magnetic energy cannot sustain periodic motion.

16. A 3-dimensional integrable system: the Euler top: Consider the free
rotation of a rigid body about a fixed point, in the absence of any external torque.
The dynamical variables are the components (ω1 , ω2 , ω3) ∈ R 3 of the angular
velocity of the body in the body-fixed principal axis frame. They comprise a 3-
dimensional dynamical system, satisfying Euler’s equations

I1 ω̇1 = (I2 − I3)ω2 ω3 , I2 ω̇2 = (I3 − I1)ω3 ω1 , I3 ω̇3 = (I1 − I2)ω1 ω2 .
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The constants I1 , I2 and I3 are the principal moments of inertia of the body. With-
out loss of generality, we may take them to satisfy the inequalities I1 > I2 > I3 >
0. As the phase space is three-dimensional, the existence of two distinct, time-
independent, smooth functions of ω1 , ω2 and ω3 guarantees that the system is
completely integrable. The Euler top is another important instance of a conserva-
tive, integrable dynamical system.

(a) Let Mi = Ii ωi , where i = 1 , 2 , 3. Show that M2 = M2
1 + M2

2 + M2
3 is a

constant of the motion.

(b) Find the critical points of the system and the nature of their stability.

(c) Find a constant of the motion other than M2 . The existence of these two
COMs suffices to determine (implicitly) the phase trajectories of the system.
Can you sketch the phase trajectories?
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Hamiltonian dynamics

1. We have seen that canonical transformations (CTs) are symplectic trans-
formations in the following sense. Let x = (q , p) where q and p stand for the
sets of generalized coordinates (q1, . . . , qn) and momenta (p1, . . . , pn), respectively.
Let ξ = (Q , P ) where Q and P stand for the new generalized coordinates and
momenta after a canonical transformation. Denote the (2n× 2n) Jacobian matrix
of the transformation by ∂ξ/∂x. Then the fact that the transformed variables also
satisfy the canonical Poisson bracket relations can be summarized in the condition(

∂ξ

∂x

)T

J

(
∂ξ

∂x

)
= J

where J (as defined in class) is the (2n× 2n) matrix

J =
(

0n In
−In 0n

)
.

Here 0n and In denote the (n×n) null matrix and unit matrix, respectively. In other
words, the Jacobian of a CT is a symplectic matrix. (A matrix M is symplectic if
it satisfies the condition MT J M = J .) Recall that J has the properties

J2 = −I and JT = J−1 = −J,

where I stands for the (2n × 2n) unit matrix. We also have det J = 1. Any sym-
plectic matrix M is unimodular, i.e., det,M = +1.

(a) If the CT is an infinitesimal one, the Jacobian is of the form I+εG. Show that
the condition for a CT becomes the following condition on the infinitesimal
generator of such a transformation:

GT = J GJ.

(b) Use the above condition to show that the number of independent parameters
(or generators) of the symplectic group Sp(2n,R) is n(2n+ 1).

(c) Note that J itself is a symplectic matrix. What is the explicit canonical
transformation (q, p)→ (Q,P ) whose Jacobian is J?

(d) In the special case of a 1-freedom Hamiltonian system, the number of pa-
rameters of the symplectic group Sp(2,R) is equal to 3. This is the same as
the number of parameters of the special linear group SL(2,R), the group of
unimodular (2 × 2) matrices with real elements. In fact, the two groups are
isomorphic to each other. Show that an arbitrary (2 × 2) matrix with real
elements and unit determinant is a symplectic matrix.

Dynamical symmetry in a Hamiltonian system: Recall the Liouville-Arnold
criterion for the integrability of an n-freedom Hamiltonian system:

• If n independent isolating integrals F1 , . . . , Fn exist, that are in involution
with each other, the system is integrable by a canonical transformation to
action-angle variables.

We may ask: What makes a Hamiltonian system integrable? What physical prop-
erty of the system lies behind the existence of (n − 1) isolating COMs other than
H itself, all of them in involution with each other? The answer is that COMs are
linked to certain dynamical symmetries possessed by the system.
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• The dynamical symmetry group of a system is the group of transformations
of its phase space variables under which the equations of motion of the system
remain form-invariant, i.e., unchanged in form.

• This implies that the solution space of the system remains invariant under
this group of transformations. Individual solutions may transform to other
individual solutions, but the set of solutions remains unchanged.

Finding the dynamical symmetry group of an arbitrary dynamical system is, in
general, a rather nontrivial task.

In the case of Hamiltonian systems, a more definite statement can be made.
The transformations required must certainly be canonical transformations. Now,
we have seen that the set of canonical transformations of an n-freedom system form
the symplectic group Sp(2n,R). (This is the group of all (2n × 2n) symplectic
matrices with real elements.) But all canonical transformations may not leave a
given Hamiltonian unchanged. Therefore,

• the dynamical symmetry group of a system with Hamiltonian H is the sub-
group of Sp(2n,R) that leaves H invariant.

It may also happen, of course, that all transformations (of the phase space variables)
that leave H invariant are not canonical transformations, i e., they may not all
belong to the symplectic group. Thus:

• The dynamical symetry group is, in general, the intersection of Sp(2n,R) with
the symmetry group of H.

These ideas are made clear by the following simple example of an integrable Hamil-
tonian system.

2. The two-dimensional isotropic harmonic oscillator is given by the Hamil-
tonian (in units such that m = 1, ω = 1)

H = 1
2 (p2

1 + q21 + p2
2 + q22) .

Thus the number of degrees of freedom n = 2 in this case. The term ‘isotropic’
refers to the fact that the natural frequencies of the two oscillators are equal to
each other. The potential then becomes a central potential (this becomes obvious
on writing it in plane polar coordinates in the (q1 , q2) plane), so that the system
has circular symmetry (or ‘isotropy’). Consider the three functions of the dynamical
variables given by

J1 = 1
4 (q21 + p2

1 − q22 − p2
2), J2 = 1

2 (q1q2 + p1p2), J3 = 1
2 (q1p2 − q2p1) .

(a) Verify that the Ji are constants of the motion.

(b) Verify that {Ji , Jj} = εijk Jk .

This last result shows that there is a deep connection between the two-dimensional
(2D) isotropic harmonic oscillator and the angular momentum Lie algebra: the
three constants of motion Ji in the former problem satisfy the same algebra as the
orbital angular momentum components Li . This is directly related to the dynami-
cal symmetry group of the 2D isotropic harmonic oscillator, which turns out to be
SU(2), the group of unitary (2×2) matrices with unit determinant. The generators
of SU(2) obey the same Lie algebra as the Ji above. This is the algebra of the
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generators of the rotation group in three dimensions, the usual angular momentum
algebra.

What is the symmetry group of H itself? It is immediately obvious from the
functional form of H for the 2D isotropic harmonic oscillator that the group of
rotations in the four-dimensional phase space spanned by q1 , p1 , q2 , p2 leaves H
unchanged: the (hyper)surface H = constant is obviously a sphere with centre at
the origin in this space. The symmetry group that leaves H unchanged is therefore
isomorphic to SO(4), the group of rotations in a four-dimensional Euclidean space.
But not all rotations in the phase space leave the equations of motion form-invariant.
The transformations that leave Hamilton’s equations unaltered in form belong to the
symplectic group of canonical transformations, Sp(4,R). The intersection of these
two groups is the actual dynamical symmetry group of the system. In mathematical
terms,

Sp(4,R) ∩ SO(4) ∼ SU(2).

3. The three-dimensional isotropic harmonic oscillator is given by the
Hamiltonian (again in units such that m = 1 , ω = 1)

H = 1
2

3∑
i=1

(p2
i + q2i ) .

(a) Show that the quantities Tij = pipj + qiqj (where i , j = 1, 2, 3) are constants
of the motion.

(b) Evaluate the Poisson brackets {Tij , Tkl} and {Λij , Tkl} , where Λij = qi pj −
qj pi . (Λij is essentially the orbital angular momentum, via the relation Λij =
εijk Lk .)

For completeness, I mention that the dynamical symmetry group of the 3D isotropic
harmonic oscillator is SU(3), the group of unitary unimodular (3×3) matrices. More
generally, the dynamical symmetry group of the n-dimensional isotropic oscillator
is the group SU(n). The number of generators of SU(n) is n2 − 1.

4. The Kepler problem: The Hamiltonian of a particle of mass m moving in
an inverse square force field is given by

H =
p 2

2m
− k

r
,

where k is a constant and r is the distance of the particle from the centre of force
, taken to be at the origin of coordinates.1 We know that the orbital angular
momentum components

Li = εijk qj pk

are constants of the motion. This is in fact valid for any central force. In addition,
the 1/r potential has the special property that there is another vector constant of
the motion, namely, the Laplace-Runge-Lenz vector defined as

A = (p× L)− mk

r
r, or Ai = εijk pj Lk −

mk

r
xi .

1A potential proportional to 1/r in three-dimensions is usually referred to as the Coulomb
potential.

10



(a) Verify that A is a constant of the motion by showing directly that dA/dt
vanishes identically.

(b) The Hamiltonian H, the three components of L, and the three components of
A comprise 7 time-independent constants of the motion. But the phase space
is only 6-dimensional. It is obvious that there must be relations between the
7 COMs above. It is easy to see that A · L = 0. Thus A has no component
along L, i. e., it lies in the plane of the orbit. This eliminates one of the 7
COMs. Show also that

A2 = 2mEL2 +m2k2,

where E is the total energy of the particle, i. e., the numerical value of the
COM represented by H. Hence in some sense there is really only one inde-
pendent component of A.

From this point onwards, let us consider the case k > 0, i. e., an attractive 1/r
potential, and closed orbits (or periodic motion). In physical terms, the Laplace-
Runge-Lenz vector of a particle describing an elliptical orbit under an attractive
inverse square law force is a vector directed along the semi-major axis of the ellipse.
Its magnitude A = |A| is proportional to the eccentricity of the ellipse: the exact
relation is eccentricity = A/(mk). The constancy of its direction implies that the
orbit does not precess for a pure inverse square law force. A small perturbation
of (or departure from) the inverse square law will generally cause a precession of
the orbit, i.e., a relatively slow drift of the direction of the semi-major axis of the
ellipse.

(c) The components of L and A constitute an algebra: their Poisson brackets
with each other turn out to be linear combinations of themselves. Show that

{Ai , Lj} = εijk Ak ,

Similarly, show that

{Ai , Aj} = (2m|E|) εijk Lk ,

where E(< 0) is the conserved total energy of the particle in its closed orbit.

Here’s how this is done. Use the canonical Poisson brackets

{xi , xj} = 0, {pi , pj} = 0, {xi , pj} = δij

to show that
{xi , Lj} = εijk xk , {pi , Lj} = εijk pk .

Hence verify that
{Li , Lj} = εijk Lk ,

which is the angular momentum algebra. Now consider the Poisson brackets
{Ai , Lj} and {Ai , Aj} . These involve Poisson brackets like {1/r , Lj}, and
it is not immediately clear how this quantity can be evaluated. To avoid the
problem, write

−k
r

= H − p 2

2m
and use the fact that Lj is a constant of the motion (that is, {Lj , H} = 0).
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(d) The result of the last part above suggest forming linear combinations of the
components of L and A/

√
2m|E| which satisfy simpler (or more easily recog-

nized) Poisson bracket relations. Carry this out to show that the components
of the two vectors

M =
1
2

( A√
2m|E|

+ L
)

and N =
1
2

( A√
2m|E|

− L
)

behave like the generators of two separate angular momentum algebras, i. e.,

{Mi , Mj} = εijkMk , {Ni , Nj} = εijkNk , and {Mi , Nj} = 0 .

In other words, we have two separate angular momentum (or so(3)) algebras! These
relations can be shown to be precisely the Lie algebra satisfied by the generators
of the group SO(4), which is the group of unimodular, real, orthogonal (4 × 4)
matrices (or the group of rotations in 4-dimensional Euclidean space). We conclude
that the dynamical symmetry group of the Kepler problem in the case E < 0, i.e.,
bounded motion,2 is SO(4). (Actually, it is a bigger group than that. Since the set
of orbits is invariant under reflection, the symmetry group is actually O(4) rather
than SO(4). This is the group of all (4×4) orthogonal matrices with real elements.)

2For completeness, I mention that the dynamical symmetry group in the case of unbounded
motion (or scattering) in a Coulomb potential is the pseudo-orthogonal group SO(3, 1), which
happens to be isomorphic to the special Lorentz group of proper, homogeneous Lorentz transfor-
mations.
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Quiz

1. Are the statements in quotation marks true or false?

(a) “The Lagrangian of a particle moving in a central potential V (r) has two
cyclic (or ignorable) coordinates.”

(b) In parts (b) to (f), we consider a system of N particles with a Lagrangian
given by

L =
1
2

N∑
i=1

mi ṙ2
i +

N∑
i,j=1
i6=j

V (|ri − rj |),

where V is a general function of its argument.

“The total angular momentum of the system is a constant of the motion.”

(c) “It is possible to make a Legendre transform to the Hamiltonian in this
case.”

(d) “We can find N constants of the motion that are in involution with each
other.”

(e) “The case N = 2 alone is integrable, but not N ≥ 3., for a general V .”

(f) “There are three cyclic or ignorable coordinates in this system.”

(g) An n-dimensional dynamical system is given by ẋ = ∇φ(x) , where
x ∈ Rn and ∇ is the gradient operator.

“If ∇2 φ < 0 everywhere, then the system is a conservative dynamical
system.”

(h) Let H(q , p) be the Hamiltonian of an autonomous system with 1 degree
of freedom.

“If A(q , p) is any function of the dynamical variables such that the Pois-
son bracket {A , H} = 0, then A is either a constant or a function of H
itself.”

(i) “The critical points of an autonomous Hamiltonian system can only be
saddle points and centers.”

(j) A particle moves on the x-axis in the potential V (x) = K|x|α where K
and α are positive numbers.

“All the phase trajectories of the particle (other than the critical point
at the origin) are closed trajectories in the (x, p) plane.”

(k) Same system as in the preceding part:

13



“The time period of oscillatory motion of the particle is independent of
its total energy in the cases α = 2 and α = −1.”

(l) Consider an autonomous 4-dimensional dynamical system ẋ = f(x) where
x ∈ R4 and f ∈ R4.

“This system can have at most 3 functionally independent constants of
the motion that do not have any explicit time-dependence.”

(m) Same system as in the preceding part:

“This system can have at most 4 functionally independent constants of
the motion, of which at least 1 must be explicitly time-dependent.”

(n) “The product of all the eigenvalues of any rotation matrix in n-dimensional
Euclidean space must be equal to (−1)n.”

(o) A system consists of N particles moving in space under k integrable (or
holonomic) constraints. Some of the constraints may be time-dependent.

“The number of independent generalized coordinates {qi} of the system
is 3(N − k).”

(p) Same system as in the preceding part:

“The kinetic energy of the system is, in general, of the form

T =
n∑
i=1

n∑
j=1

Aij q̇i q̇j +
n∑
i=1

Bi q̇i + C

where n is the number of independent degrees of freedom, and Aij , Bi
and C are functions of {qi} and t.”

(q) A particle moves in space under the potential V (x) = K(x4 + y4 + z4)
where K is a positive constant.

“The angular momentum of the particle about the origin of coordinates
is a constant of the motion.”

(r) A particle moves in space under the potential V (r).

“If V (r) is invariant under the parity transformation r → −r, this im-
plies the existence of a constant of the motion, according to Noether’s
Theorem.”

(s) “The canonical momentum of a charged particle moving in an electro-
magnetic field is dependent on the gauge chosen for the electromagnetic
potentials.”

14



(t) “The dynamical symmetry group of the n-dimensional isotropic harmonic
oscillator is SO(2n).”

(u) A system with two degrees of freedom has the Lagrangian

L =
1
2

(q̇1 − q̇2)2 + V (q1 , q2).

“It is not possible to make a Legendre transformation to the Hamiltonian
in this case.”

(v) “The group of (2n×2n) symplectic matrices with real elements is a sub-
group of the group of (2n×2n) orthogonal matrices with real elements.”

(w) Let M = ∂(Q,P )/∂(q, p) denote the Jacobian matrix of a canonical
transformation.

“The transformation whose Jacobian matrix is given by MT is also a
canonical transformation.”

(x) Noether’s Theorem enables us to find a conserved quantity associated
with a group of continuous transformations of the dynamical variables of
a Lagrangian system.

“In order for the theorem to be applicable, the Lagrangian must be un-
changed under the transformations belonging to the group.”

(y) “There is an analogue of the Laplace-Runge-Lenz vector, i.e., a vector
constant of the motion, for the motion of a particle in a central potential
of the form V (r) = krn where n is any nonzero integer.”

(z) “Euler’s equations for the force-free motion of a rigid body describe a
completely integrable system.”

2. Fill in the blanks in the following:

(a) The Cartesian coordinates and conjugate momenta of a particle moving
in space satisfy the canonical Poisson bracket relations

{xi , xj} = 0 , {pi , pj} = 0 , {xi , pj} = δij , where i , j = 1 , 2 , 3 .

If r2 = x2
1 + x2

2 + x2
3 and p2 = p2

1 + p2
2 + p2

3 as usual, then {r2 , p2} = · · ·

(b) A bead of mass m is constrained to move without friction on a wire in
the shape of a parabola located in a vertical plane (the yz-plane). The
axis of the parabola is along the z-axis, and the equation to the parabola
is z = 1

2ky
2 where k is a positive constant. The wire is rotated about

the z-axis at a constant angular speed ω. Let % denote the distance of
the bead from the z-axis. After all the constraints are imposed, the mo-
mentum conjugate to % is p = · · ·
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(c) Consider the two-dimensional dynamical system

ẋ = x+ y − x
(
x2 + y2

)
, ẏ = −x+ y − y

(
x2 + y2

)
.

Using the Bendixson criterion, we may conclude that the largest circle
centered at the origin, within which the system cannot have a closed
trajectory, is of radius rmax = · · ·

(d) In the Kepler problem with an attractive 1/r potential, let H , L and A
denote the Hamiltonian, the orbital angular momentum and the Laplace-
Runge-Lenz vector, respectively. A quantity formed from these that
Poisson-commutes with every component of L and A is · · ·

(e) If εijk denotes the Levi-Civita symbol in three dimensions, as usual, the
εijk εklm εmni = · · ·

(f) The number of independent components of a tensor of rank k in n-
dimensional Euclidean space is · · · .

(g) In the preceding question, if the tensor is totally symmetric, the number
of independent components is · · · .

(h) The general form of a (2×2) unitary matrix with determinant = +1 is · · · .

(i) The parameter space of the group of rotations in three-dimensional Eu-
clidean space is · · · .

(j) Parabolic coordinates (σ, τ) in a plane are defined in terms of the Carte-
sian coordinates by x = στ , y = 1

2 (τ2 − σ2). The kinetic energy of a
particle of mass m moving in the plane is, in these coordinates, T = · · ·

16



Thermodynamics and Classical Statistical Physics

1. Some probability distributions:

(a) A pair of (distinguishable) dice is tossed once. Each die can give a score of 1,
2, 3 ,4, 5 and 6. Let s denote the total score of the pair of dice. What is the
probability distribution of s, and what is its most probable value?

(b) The normalized probability density of the x-component of the velocity of
a molecule of mass m in a classical ideal gas in thermal equilibrium at a
temperature T is given by the Maxwellian(

m

2πkBT

)1/2

exp
(
− mv2

x

2kBT

)
.

What is the probability density of the magnitude |vx| of the x-component of
the velocity?

(c) The y- and z-components vy and vz of the velocity of a molecule have exactly
the same probability density functions as that of vx given above. What is the
normalized probability density function of the speed v of a molecule?

2. Specific heat of an ideal gas in a polytropic process: One mole of an ideal
gas (PV = RT ) undergoes a polytropic process defined by the condition PV n =
constant, where the index n is a positive number (not necessarily an integer).

(a) Show that the specific heat of the gas corresponding to this process is given
by

Cn = Cv

(n− γ
n− 1

)
,

where Cv is the specific heat at constant volume, and γ = Cp/Cv.

(b) Sketch Cn versus n for 0 ≤ n <∞. Interpret in physical terms what happens
when (i) n = 0 (ii) n = 1 (iii) n = γ (iv) n → ∞. Observe that Cn can
never take a value that lies in between Cv and Cp.

(c) Can n be negative?

3. The chemical potential of a thermodynamic system may be defined as the
change in the Helmholtz free energy F when one more particle is added to a system
of N particles keeping all other thermodynamic variables unaltered, i.e.,

µ = F (V, T,N + 1)− F (V, T,N).

(a) The thermodynamic limit is defined as the limit in which N →∞ and V →∞
such that the number density N/V → n, a finite quantity. Show that the
chemical potential is given by

µ =
(
∂f

∂n

)
T

, where f = lim
F

V
.

(b) From the relation P = − (∂F/∂V )T,N , show that P = µn− f .

(c) Hence show that µ = G/N , the Gibbs energy per particle.
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(d) We know that the internal energy U (a thermodynamic potential) is a func-
tion of S, V and N , for a single component system of N particles in a volume
V . Show that the thermodynamic potential Φ(T, P, µ) obtained by making a
Legendre transform to the three corresponding conjugate variables T, P and µ
is trivially zero. What is the physical reason why a nontrivial thermodynamic
potential Φ(T, P, µ) cannot exist?

4. Some thermodynamic identities:

(a) Show that the difference Cp − Cv is given in general, by

Cp − Cv =
Tα2

TV

κT
,

where

αT =
1
V

(
∂V

∂T

)
P,N

and κT = − 1
V

(
∂V

∂P

)
T,N

denote, respectively, the coefficient of thermal expansion and the isothermal
compressibility.

(b) Hence show that
∂2F

∂T 2
=
∂2G

∂T 2
−
(
∂2G/∂T∂P

)2
(∂2G/∂P 2)

.

5. Number fluctuations in a classical ideal gas: Consider a classical ideal
gas of N particles in a container of volume V . The particles move independently
of each other, and each particle has an equal probability of being located in any
volume element of the container. The probability that there are n particles in a
sub-volume v at any instant of time is then given by the binomial distribution

PN (n) =
(
N

n

)(
v

V

)n(
1− v

V

)N−n
.

Here
(
N
n

)
denotes the binomial coefficient NCn.

(a) In the thermodynamic limit, N → ∞ and V → ∞ keeping N/V = ρ finite.
Use Stirling’s formula, show that, in this limit, PN (n) approaches the Poisson
distribution

P (n) =
e−n (n)n

n!
(n = 0, 1, 2, . . .)

where n = ρv.

(b) The Poisson distribution has a number of striking properties. Show that the
variance of n is equal to the mean value n itself. Hence the relative fluctuation
in n, given by the ratio of the standard deviation to the mean value, is equal
to 1/

√
n, a characteristic property of a Poisson-distributed random variable.

(c) Show that every higher cumulants κr (r ≥ 3) is also equal to the mean value
n. Again, this is a characteristic property of the Poisson distribution.

(d) Estimate n for air at NTP (i. e., T = 300 K, P = 1 atmosphere), for a volume
v = 1 m3.
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(e) Now consider two neighbouring sub-volumes v1 and v2 . The probability that
there are n1 particles in v1 is e−n1(n1)n1/n1!, where n1 = ρv1 . Similarly,
the probability that there are n2 particles in v2 is e−n2(n2)n2/n2!, where
n2 = ρv2 . Let v = v1 + v2 . Show that the probability that there are n parti-
cles in v is again given by a Poisson distribution, with mean value n = n1+n2 .

Extensivity of the internal energy: A homogeneous function f of degree r
in the variables x1, x2, . . . , xn satisfies the relation

f(λx1, λx2, . . . , λxn) = λrf(x1, x2, . . . , xn)

for any λ. Homogeneity effectively reduces number of independent variables by one:
for example, putting λ = 1/x1 in the relationship above, we get

1
xr1

f(x1, x2, . . . , xn) = f
(

1,
x2

x1
, . . . ,

xn
x1

)
.

In other words, the function f must have the form

f(x1, x2, . . . , xn) = xr1 φ
(x2

x1
,
x3

x1
, . . . ,

xn
x1

)
,

so that the ‘unknown’ part of the function depends only on the (n − 1) ratios
x2/x1, . . . , xn/x1 . This sort of relation is called a scaling relation.

As we learn in elementary calculus, a homogeneous function of degree r satisfies
Euler’s theorem, namely,

x1
∂f

∂x1
+ · · ·+ xn

∂f

∂xn
= r f.

Recall the application to the case of a single component, simple fluid. The laws of
thermodynamics give

dU = T dS − P dV + µdN,

so that we can make the identifications

T =
(
∂U

∂S

)
V,N

, P = −
(
∂U

∂V

)
S,N

µ =
(
∂U

∂N

)
S,V

.

Then the extensively of the internal energy, i.e., the assumption that the internal
energy U is a homogeneous function of degree 1 of the entropy S, the volume V
and the number of particles N , leads immediately to

U = S

(
∂U

∂S

)
V,N

+ V

(
∂U

∂V

)
S,N

+N

(
∂U

∂N

)
S,V

= TS − PV + µN.

This is the Euler relation. Since the Gibbs free energy is given by G = U −TS+
PV , it follows that

G = µN.

Take the differentials of both sides of the Euler relation, and use the expression for
dU that follows from the ;aws of thermodynamics. We get

SdT − V dP +Ndµ = 0.

Therefore
dµ = v dP − s dT,
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where v = V/N and s = S/N denote, respectively, the specific volume and specific
entropy. This is the Gibbs-Duhem relation. It implies that the chemical poten-
tial is a function of the intensive variables P and T , i.e., µ = µ(P, T ).

6. Generalized homogenous functions: A generalized homogeneous function
f(x1, x2, . . . , xn) of n variables satisfies the relation

f(λα1x1, λ
α2x2, . . . , λ

αnxn) = λ f(x1, x2, . . . , xn)

for all λ. Here the exponents α1, . . . , αn are in general different from each other. (It
is obvious that when α1 = α2 = · · · = αn = 1/r, you get an ordinary homogeneous
function of degree r.) Once again, we can reduce the number of dependent variables
by one, using the generalized homogeneity property. If we set λα1 = x−1

1 or λ =
x
−1/α1
1 , it follows that the generalized homogeneous function f must be of the form

f(x1, x2, . . . , xn) = x
−1/α1
1 f

(
1,

x2

x
α2/α1
1

, . . . ,
xn

x
αn/α1
1

)
≡ x

−1/α1
1 φ

( x2

x
α2/α1
1

, . . . ,
xn

x
αn/α1
1

)
.

Show that Euler’s theorem is now generalized to read

α1x1
∂f

∂x1
+ α2x2

∂f

∂x2
+ · · ·+ αnxn

∂f

∂xn
= f(x1, x2, . . . , xn).

In equilibrium statistical mechanics, generalized homogenous functions play a very
important role in the understanding of scaling behavior in the context of phase
transitions and critical phenomena.

7. Application to ideal gases: The equation of state of a given quantity of
an ideal gas (classical or quantum!) can be written in the form PV = aU , where
a is a constant which is equal to 2

3 for a classical ideal gas, 1
3 for a photon gas (or

blackbody radiation), and so on.

(a) Given this equation of state, show that

U(T, V ) = T

(
∂U

∂T

)
V

− V

a

(
∂U

∂V

)
T

.

(b) This relation implies that U(T, V ) is a generalized homogenous function. Show
that U must be of the form

U(T, V ) = V −a φ(TV a) or, equivalently, U(T, V ) = T ψ(V T 1/a).

If, further, we are also given that U(V, T ) = V u(T ), then the function U is fully
determined. This is what happens in the case of blackbody radiation, for which
a = 1

3 , so that it follows at once that U = (const.)V T 4. Thus, the Stefan-Boltzmann
Law is derivable (except for the value of the multiplicative constant, of course) from
purely thermodynamic considerations.
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Quiz

1. Are the statements in quotation marks true or false?

(a) “The chemical potential of a thermodynamic system is an extensive quan-
tity.”

(b) “The slope of the liquid-gas coexistence curve in the (T, P ) plane (P
plotted as a function of T ) is always positive.”

(c) “The square of the mean of a random variable can never exceed the mean
of its square.”

(d) Let p1(x) and p2(y) be the respective normalized probability density
functions of two independent random variables x and y, where −∞ <
x, y <∞.

“The normalized probability density function of the random variable
z = xy is given by

∫∞
−∞ dx p1(x) p2(z − x).”

(e) “For the Maxwellian distribution of velocities of the molecules of a clas-
sical ideal gas, the mean speed of a molecule is equal to the r.m.s. speed
of a molecule.”

(f) “The relation Cp − Cv = T (∂V/∂T )P (∂P/∂T )V is valid for all gases,
and not just for an ideal gas.”

(g) “In a system in thermal equilibrium at a temperature T , the mean value
of any observable is equal to its most probable value.”

(h) Let F denote the Helmholtz free energy of a substance.

“
(
∂2F/∂T 2

)
V,N

must be negative definite.”

(i) When a biased coin is tossed, ‘heads’ appears with a probability p and
‘tails’ with a probability q = 1 − p. The coin is tossed repeatedly, till a
‘heads’ is obtained.

“The probability Pn that a ‘heads’ is obtained for the first time in the
nth toss is given by Pn = (n− 1)q + p.”

2. A system has N possible energy levels, given by ε, 2ε, . . . , Nε, where ε is
a positive constant. The energy level nε is n-fold degenerate, i.e., for each
allowed value of n, there are n different states corresponding to the same
energy level nε. The system is in thermal equilibrium in contact with a heat
bath at temperature T . Fill in the blanks in the following:

(a) The total number of distinct states of the system is · · ·

(b) The probability that the system is in its ground state is · · ·

21



(c) The probability that the system has its highest possible energy is · · ·

(d) If the temperature exceeds a certain value T̃ , then the probability that
the system has an energy 2ε actually exceeds the probability that it has
an energy ε. This temperature T̃ is equal to · · ·

(e) In the limit T → 0, the probability that the system has energy 2ε is · · ·

(f) In the limit T → ∞, the probability that the system is in a particular
one of the states corresponding to energy Nε is · · ·

3. One mole of a Van der Waals gas obeying the equation of state(
P +

a

V 2

)
(V − b) = RT

undergoes an isothermal expansion from a volume V1 to a volume V2, at a
temperature T . Show that the change ∆U = U2 − U1 in the internal energy
of the gas is given by

∆U = a
( 1
V1
− 1
V2

)
.

22



Special Relativity

Special Relativity is based on a general principle and a physical postulate.

The Principle of Relativity asserts that the laws of physical phenomena are un-
changed in form for all mutually inertial observers—that is, in all frames of reference
related to each other by Lorentz transformations. The term ‘Lorentz transfor-
mation’ is often used to mean a transformation to a frame of reference moving
uniformly with respect to the original frame. This is a velocity transformation or
boost. Lorentz transformations actually comprise boosts in all possible directions,
as well as rotations of the spatial axes in all directions. More precisely: rotations
and boosts constitute the set of homogeneous, proper Lorentz transformations, the
so-called special Lorentz transformations. Such transformations comprise the
Lorentz group, denoted by SO(3, 1). Inhomogeneous Lorentz transformations in-
clude shifts (or translations) of the origin of the spacetime coordinates by constant
amounts, over and above the set of rotations and boosts. Inhomogeneous Lorentz
transformations also form a group, called the inhomogeneous Lorentz group or the
Poincaré group. The principle of relativity stated above applies to this extended
set of transformations. But we will not consider these here.3

The Postulate of Relativity says that there exists a fundamental limiting speed
in nature, that is the same in all mutually inertial frames of reference. Light prop-
agates in a vacuum with this limiting speed, denoted by c. So does any particle
whose rest mass happens to be exactly zero.

The question arises as to what happens in different sets of mutually inertial
frames of reference, which may be accelerating with respect to each other. Without
going into details, I merely mention that, strictly speaking, the principle of (special)
relativity stated above is only valid in ‘flat’ spacetime, i.e., spacetime in the absence
of any curvature or gravitational fields. Gravitation enters the picture because of
the Principle of Equivalence which says, broadly speaking, that any acceleration
is equivalent to the effect of a gravitational field. The latter, in turn, is a manifesta-
tion of the curvature of spacetime. There is a specific criterion to determine whether
any given region of spacetime is flat or not. It takes fairly intense gravitational fields
to produce significant curvature in a region of spacetime, so that the lattermay be
taken to be flat to a good approximation even in the presence of mild gravita-
tional fields. This is why special relativity, rather than general relativity, suffices to
handle all situations except those involving the effects very high gravitational fields.

Boost formulas: Consider a frame of reference S, and another frame of reference
S′ moving at a uniform velocity v with respect to it. Let (r, t) and (r ′, t ′) be the
respective spacetime coordinates in S and S′. We assume, for simplicity, that the
origins and the Cartesian axes of the two frames coincide at t = 0. You are no
doubt familiar with the Lorentz transformation formulas in the special case when
v = v ex . But it is quite simple to write down the transformation rules for a boost
velocity v in any arbitrary direction.

Resolve the coordinate vector r (in S) into components along v and transverse
to it:

r = r‖ + r⊥ =
r · v
v2

v +
(
r− r · v

v2
v
)
.

The transverse component r⊥ is not affected by the boost, as you might expect.
3There are also improper transformations such as parity (under which r → −r) and time

reversal (under which t→ −t).
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The longitudinal component undergoes the customary transformation. Let

γv = 1/
√

1− (v/c)2 ,

as usual. Then the Lorentz transformation formulas corresponding to the boost are

ct ′ = γv

(
ct− r · v

c

)
,

r ′ = γv

(r · v
v2

v − vt
)

+
(
r− r · v

v2
v
)
.

In three-dimensional Euclidean space, the square of the distance to any point,
r2 = xi xi, is preserved under rotations of the coordinate axes about the origin.
In the same way, what is preserved under Lorentz transformations is the square of
the spacetime interval from the origin to any point in spacetime, c2t2 − r2. The
surface r2 = constant is a sphere in space. The hypersurface c2t2 − r2 = constant
is a hyperboloid in spacetime.

1. Given the boost formulas above, verify that c2t ′2 − r ′2 = c2t2 − r2.

2. Collinear boosts and the velocity addition rule: The usual special case is
the one in which the frame S′ moves with a velocity v = v ex along the x-axis of S.
The boost formulas then reduce to the familiar ones for the spacetime coordinates
in S′, namely,

ct ′ = γv

(
ct− xv

c

)
, x ′ = γv(x− vt), y ′ = y, z ′ = z.

Now suppose a third frame of reference S′′ is moving at a uniform velocity u ex with
respect to S′. The spacetime coordinates in this frame are therefore given by

ct ′′ = γu

(
ct ′ − x ′ u

c

)
, x ′′ = γu(x ′ − ut ′), y ′′ = y ′, z ′′ = z ′,

where γu = 1/
√

1− (u/c)2 . Put in the expressions for the primed variables in terms
of the unprimed ones, to show that the spacetime coordinates in S′′ are related to
those of the original frame S by a single boost w ex , as follows:

ct ′′ = γw

(
ct− xw

c

)
, x ′′ = γw(x− wt), y ′′ = y, z ′′ = z,

where
γw = 1/

√
1− (w/c)2 , with w =

v + u

1 + (vu/c2)
.

Hence the resultant of two successive boosts in the same direction is again a boost
in the same direction. However, the resultant boost is nonlinear in the individual
boosts, and explicitly involves the fundamental velocity c. The expression for w
differs strikingly from that in the nonrelativistic (or Newtonian) case, in which w
is simply equal to u+ v.

3. The rapidity: Although velocities (along the same direction) do not simply add
up according to the relativistic law of addition of velocities, there does exist a
certain function of the velocity that obeys an additive rule. Define the rapidity ξv
corresponding to a velocity v as

ξv = tanh−1(v/c).
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Show that the relativistic law of addition of velocities derived above is just

ξw = ξv + ξu .

Thus, when the velocities are collinear, rapidities, rather than velocities, add up.
For v � c, the rapidity ξv ' v/c to leading order. As v → c, ξv → ∞. Note also
that the quantities γv and ξv are related according to

γv = 1/
√

1− (v/c)2 = cosh ξv .

Boosts in different directions: Surprisingly enough, two boosts in different di-
rections do not combine into a single resultant boost in some direction! Instead,
two successive boosts in different directions are equivalent to a single boost together
with a rotation. This rotation is called a Wigner rotation, and is responsible for
the phenomenon of Thomas precession.

Why don’t two boost velocity vectors v and u just add up to produce a resul-
tant boost velocity (v + u), modulated by some ‘correction factor’ involving c? A
physical way of understanding the reason why is as follows. Consider a boost from a
frame S to a frame S′ by a boost v. The expression for the new spatial coordinates
r ′ indicates the way in which the components of any three-vector transform under
a boost. It shows that the component of the vector along the direction of the boost,
and the part normal to the boost, transform in different ways. Now, when a boost
v is followed by a boost u, the latter acts on not only the original coordinate r, but
also on the original boost velocity vector v, because r ′ involves both r and v. The
part of v that is directed along u and the part that is normal to u get transformed in
different ways. This produces a kind of ‘twist’, whose effect shows up as a rotation of
the axes. As a consequence, while the set of all possible rotations constitutes a sub-
group of the group of Lorentz transformations, the set of all possible boosts does not.

Lorentz scalars and four-vectors: The spacetime coordinates (ct , r) ≡ (x0 , r)
form a four-vector, which I will denote by x. (Obviously, all the four components
of a four-vector must have the same physical dimensions; hence the replacement
of t by ct.) As in the case of three-vectors in Euclidean space, any other set of
four quantities (a0 , a) constitutes a four-vector a if it transforms, under Lorentz
transformations, exactly as the spacetime coordinate x does. The component a0

is the time-like component of the four-vector, while the Cartesian components of
a are its space-like components. Similarly, if E and p are the energy and linear
momentum of a particle, respectively, then p = (E/c , p) is the four-momentum of
the particle. Other four-vectors of relevance to us in the context of electromagnetism
are the four-vector current density

j = (j0 , j) = (cρ , j)

that combines the charge density ρ and the current density j; and the four-vector
potential

A = (A0 , A) = (φ/c , A)

that combines the scalar potential φ and the vector potential A.

A Lorentz scalar is a quantity that remains invariant under Lorentz transforma-
tions. A crucial feature of special relativity is incorporated in the way the scalar
product of two four-vectors a = (a0 , a) and b = (b0 , b) is defined so as to produce
a Lorentz scalar. Recall that the square of the interval from the origin to any point
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in spacetime, c2t2 − r2, is preserved under Lorentz transformations. This means
that the scalar product of x = (ct , r) with itself must be defined as

x · x = c2t2 − r2,

where r = |r|. Similarly, the ‘square’ of the four-momentum p of a particle must be
a Lorentz scalar. For a free particle, it is given by

p · p = (E2/c2)− p2 = m2c2,

where p = |p|. The constant m is, as you know, the rest-mass of the particle. For
physical particles, m ≥ 0. More generally, the scalar product of two four-vectors a
and b is defined as

a · b = a0 b0 − a · b .

The relative minus sign between the squares of the time-like and space-like compo-
nents is all-important. (This sign will emerge automatically if we define an appro-
priate metric tensor, and introduce contravariant and covariant indices. I shall not
do so here.)

The four-dimensional gradient operator is defined as

∂ = (∂0 , −∇) =
(

1
c

∂

∂t
, −∇

)
.

The minus sign in the space-like components in the definition above ensures that
the four-divergence of x is correctly given by

∂ · x = ∂0 x0 − (−∇ · r) = ∂0 x0 +∇ · r = 1 + 3 = 4,

which is the dimensionality of spacetime. The equation of continuity is, in this
notation,

∂ρ/∂t+∇ · j = ∂ · j = 0.

Hence the equation of continuity is the statement that the four-divergence of the
four-current density is zero. But ∂ · j is a Lorentz scalar, so that it remains equal to
zero in all mutually inertial frames of reference. This is as it should be, because the
physical content of the equation of continuity, namely, the conservation of electric
charge, must remain valid for all mutually inertial observers.

As you know, from the gradient operator ∇ we can construct the Laplacian
∇ · ∇ = ∇2, which is a scalar operator in the sense that it is invariant under
rotations of the spatial coordinate axes. The relativistic analog of the Laplacian is
the d’Alembertian (or box operator, or wave operator), defined as

� = ∂ · ∂ =
1
c2
∂2

∂t2
−∇2 .

By construction, the box operator is a Lorentz scalar. This property is crucial to
the relativistic invariance of Maxwell’s equations of electromagnetism, as we will
see shortly.
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Classical Electromagnetism

The sources for the electric field E(r, t) and the magnetic field B(r, t) are the charge
density ρ(r, t) and the current density j(r, t) The homogeneous pair of Maxwell’s
equations for the electromagnetic (EM) fields in free space are

∇ ·B = 0, (∇×E) + ∂B/∂t = 0,

while the inhomogeneous pair of equations (in which the sources of the electromag-
netic fields are explicitly present) are

∇ ·E = ρ/ε0 , (∇×B)− µ0ε0 ∂E/∂t = µ0 j.

Here ε0 and µ0 denote, respectively, the permittivity and permeability of free space.
The combination (µ0ε0)−1/2 = c, the speed of EM waves in free space. Note that
the equation of continuity,

∂ρ

∂t
+∇ · j = 0,

is built into the Maxwell equations. The conservation of electric charge follows from
the equation of continuity.

The homogeneous Maxwell equations apply to all EM fields, regardless of the
sources ρ and j. They imply at once that B and E can be written in the form

B(r, t) = ∇×A(r, t) and E(r, t) = − ∂

∂t
A(r, t)−∇φ(r, t),

respectively, in terms of the the vector potential A and the scalar potential φ.
Inserting these into the inhomogeneous Maxwell equation, we get

∂

∂t
(∇ ·A) +∇2φ = − ρ

ε0
,

and

∇
(

1
c2
∂φ

∂t
+∇ ·A

)
+

1
c2
∂2A
∂t2
−∇2A = µ0 j.

Note that the equations for A and φ are coupled to each other. Solving then is made
easier by exploiting a certain arbitrariness in the potentials called gauge freedom.

Gauge freedom and gauge invariance: It is easy to see from the expressions for
E and B in terms of the potentials that the physical EM fields do not get affected
if A and φ are replaced by A′ and φ ′, respectively, where

A′ = A +∇χ and φ ′ = φ− ∂χ

∂t
.

These comprise a gauge transformation of the EM potentials. The fact that E
and B remain unaltered is called the gauge invariance of the EM fields. The
arbitrariness in A and φ implied by the foregoing is called gauge freedom. The
choice of any specific function χ ‘fixes the gauge’. Maxwell’s field equations are
obviously gauge invariant, because they involve the fields E and B directly, rather
than the potentials. All physical or measurable quantities pertaining to the EM
fields, such as the energy of the field, its momentum, angular momentum, and so
on, must be expressible in terms of these fields (rather than the potentials alone),
and must therefore be gauge invariant as well.
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These statements imply that the potentials themselves are auxiliary mathemati-
cal quantities rather than physical observables, at least in classical electrodynamics.4

Gauge freedom enables us to work in specific gauges that simplify the problem of
solving for the EM fields.

1. Coulomb and Lorenz gauges:

(a) In the so-called Coulomb gauge, the vector potential is solenoidal: the gauge
is specified by setting div A ≡ 0. Show that it is always possible to impose
this condition, along the following lines. Suppose ∇·A is not zero, but is equal
to some function f(r, t). A gauge transformation in which the gauge function
χ(r, t) is chosen to be the solution of Poisson’s equation, with −f(r, t) as the
source term, will then ensure that the transformed potential A′ is solenoidal.

(b) The Lorenz gauge is specified by imposing the condition

1
c2
∂φ

∂t
+∇ ·A = 0

on the scalar and vector potentials. Show that it is always possible to trans-
form to the Lorenz gauge, along the following lines. Suppose the quantity
(1/c2) ∂φ/∂t+∇·A is not zero, but is equal to some function g(r, t). A gauge
transformation in which χ(r, t) is chosen to be the solution of the wave equa-
tion, with −g(r, t) as the source term, will then ensure that the new potentials
A′ and φ′ satisfy the Lorenz gauge condition.

In the Coulomb gauge, finding φ reduces to solving Poisson’s quation with −ρ/ε0
as the source term. Subsequently, the solution of an inhomogeneous wave equation
determines A, and thence the EM fields. In the Lorenz gauge, finding A reduces to
solving the wave equation with µ0 j as the source term. Subsequently, the solution
of an inhomogeneous wave equation determines φ, and thence the EM fields. Both
the equations involved are among the standard equations of mathematical physics,
and a variety of techniques have been developed to solve them under different initial
and boundary conditions.

2. Special cases: electrostatics and magnetostatics:

(a) Electrostatics corresponds to the special case in which there is a static charge
density ρ(r), and no current density. There is no magnetic field present, and
the electric field is irrotational:

∇ ·E(r) = ρ(r)/ε0 and ∇×E(r) = 0.

Hence E can be written as −∇φ(r), the potential satisfying ∇2 φ = −ρ/ε.
Show that the solution satisfying the ‘natural’ boundary condition φ → 0 as
r →∞ leads to the fundamental result

E(r) =
1

4πε0

∫
d3r ′

ρ(r ′)(r− r ′)
|r− r ′|3

for the electrostatic field.

More complicated boundary conditions lead to more intricate solutions. The com-
plexity in electrostatics arises essentially because of the boundary conditions.

4The situation is more complicated in quantum physics, and I shall not digress into this matter
here.
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(b) Magnetostatics, too, involves no time dependence. The the static magnetic
field B(r) is induced by a steady current density j(r). The field equations are

∇ ·B(r) = 0 and ∇×B(r) = µ0 j(r).

Set B(r) = ∇×A(r), use the standard identity for ∇× (∇×A) and work in
the Coulomb gauge to get

∇2A(r) = −µ0 j(r).

Hence show that the solution corresponding to natural boundary conditions
is

B(r) =
µ0

4π

∫
d3r ′

j(r ′)× (r− r ′)
|r− r ′|3

.

You will recognize this result as the general form of the Biot-Savart Law
for the magnetostatic field due to a steady current density.

Relativistic invariance of electromagnetism: Recall that the four-dimensional
gradient operator is ∂ =

(
(1/c)∂/∂t, −∇

)
, while the four-vector potential is A =(

φ/c,A
)
. The Lorenz gauge condition is

1
c2
∂φ

∂t
+∇ ·A = ∂ ·A = 0.

That is, the Lorentz gauge condition is just the requirement that the four-divergence
of the four-vector potential be zero. The analogy with the Coulomb gauge ∇·A = 0
is now obvious. The Lorenz gauge is the relativistic generalization of the Coulomb
gauge. The great advantage of the Lorentz gauge is that it remains unchanged un-
der Lorentz transformations, because ∂ ·A is a Lorentz scalar.5

Recall, further, that in the Lorenz gauge, the vector and scalar potentials of EM
satisfy the wave equation with j and ρ as the respective sources. But (cρ , j) is just
the four-current density. Therefore the two wave equations can be combined into
the single compact equation

� A = j, with the gauge condition ∂ ·A = 0.

Thus, Maxwell’s equations in free space reduce to the wave equation for the four-
vector potential in the Lorenz gauge. Both the gauge condition and the wave
equation are manifestly covariant, i.e., they are form-invariant under Lorentz trans-
formations.

Lorentz transformation properties of E and B: It is clear that electric and
magnetic fields are frame-dependent, i.e., they transform as one goes from one inter-
tial frame to another. Their transformation properties under rotations of the spatial
coordinate axes are obvious, because both E and B are three-vectors under such
rotations. But under boosts, the components of the electric and magnetic fields get
mixed up with each other.6 What are the transformation rules for EM fields?

5Many other Lorentz-invariant gauges are possible, of course: for instance, the gauge in which
x ·A = 0. But the most useful one, by far, is the Lorenz gauge.

6For instance, a static charge in one frame looks like a current in a moving frame; this means
an electrostatic field in the first frame could appear as an electric field as well as a magnetic field
in the moving frame.
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This question is most directly answered by noting, first, that the general expres-
sions B = ∇×A and E = −(1/c)∂A/∂t−∇φ, though rather different-looking, are
really very close analogs when expressed in terms of four-vectors: they represent
different components of the four-dimensional ‘curl’ of the four-vector potential. As
such, they can be combined in a single electromagnetic field tensor, which is
am antisymmetric tensor of rank 2 in (3 + 1) dimensional spacetime. The Lorentz
transformation properties of such a tensor are manifest, and the manner in which
E and B themselves transform can be read off from these. Here I merely quote the
result.

Let E, B be the electric and magnetic fields as measured in a frame of reference
S, and let E′ ,B′ be the same fields measured in a frame S ′ that is boosted with
a velocity v with respect to S. The fields in S ′ are related to the ones in S as
follows. Let the subscripts ‖ and ⊥, respectively, denote the components of the
fields respectively parallel and perpendicular to the direction of the boost v. Let
γv = 1/

√
1− (v/c)2 , as usual. Then,

E ′‖ = E‖ , E ′⊥ = γv
[
E⊥ + (v ×B⊥)

]
and

B ′‖ = B‖ , B ′⊥ = γv

[
B⊥ −

(v ×E⊥)
c2

]
.

Several noteworthy points follow from these relations.

(i) The components of the EM fields along the direction of the boost are unaf-
fected by the boost.

(ii) It is the transverse components E⊥ and B⊥ that get mixed up with each other
as a consequence of the boost.

(iii) For sufficiently small boosts, such that v2/c2 (note the square) is negligible
compared to unity, we have

E ′ ' E + (v ×B) and B ′ ' B− (v ×E)
c2

.

These relations suggest how the Lorentz force on a moving charge arises—or,
from another point of view, how the magnetic field itself is a natural conse-
quence of charges in motion.

3. Lorentz invariants of the EM fields: Certain combinations of the electric and
magnetic fields remain invariant, i.e., are scalars, under Lorentz transformations.
From the expressions for E ′ and B ′ given above, show that

(i) E ·B = E ′ ·B ′ (ii) E2 − c2 B2 = E ′ 2 − c2 B ′ 2.

Since E · B and E2 − c2 B2 are also scalars under rotations of the spatial coordi-
nate axes, it follows that these combinations are invariant under (proper) Lorentz
transformations.7

Thus, if E ·B = 0 in one frame of reference, it remains so for all frames obtained
from it by Lorentz transformations. It follows that transverse electromagnetic waves
remain transverse electromagnetic waves for all mutually inertial observers. That
is, light remains light in all inertial frames. This is only to be expected, given that
our starting point was the postulate of relativity!

7The quantity E2 − c2 B2 turns out to be essentially the Lagrangian density of the EM field.
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More generally, since E ·B = E ′ ·B ′, we have EB cos θ = E ′B ′ cos θ ′, where
θ and θ ′ are the angles between the electric and magnetic fields in the frame S and
the boosted frame S ′, respectively. It follows immediately that cos θ and cos θ ′

must have the same sign. That is, if E and B make an acute (respectively, right
and obtuse) angle with each other in a given frame, they continue to make such an
angle in any Lorentz-transformed frame.

4. Let E and B be constant, uniform fields making an arbitrary acute angle with
each other, in a frame of reference S.

(a) Show that it is always possible to find a boosted frame S ′ such that E ′ is
parallel to B ′.

(b) Find an expression for the boost velocity required to go from S to S ′.

Energy density and the Poynting vector: The energy density of the EM
field is given by

W = 1
2 ε0 (E2 + c2B2).

W is not a Lorentz scalar, in contrast to the Lagrangian density of the EM field.
The energy flux density of the EM field (i.e., the energy crossing unit area per unit
time) is given by the Poynting vector

S =
1
µ0

(E×B).

5. In view of their physical meanings, we may expect W and S to be related by a
continuity equation. Using Maxwell’s equations, show that

∂W

∂t
+∇ · S = −(E · j).

The right-hand side of the equation above is just the rate of Ohmic dissipation, as
one would expect. In the absence of sources (ρ = 0, j = 0), i.e., for a pure radiation
field, the quantity ∂W/∂t+∇ · S = 0 in all mutually inertial frames of reference.
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Test

1. Are the statements in quotation marks true or false?

(a) “The Lagrangian formalism is not applicable to a system of particles
subject to velocity-dependent forces.”

(b) “The slope of the sublimation curve of a substance in the P versus T
plot can never be negative. ”

(c) Let 〈xn〉 denote the nth moment of a random variable x.

“〈x4〉 is always greater than or equal to 3〈x2〉2.”

(d) “The time evolution of a classical Hamiltonian system can be regarded
as a sequence of infinitesimal canonical transformations.”

(e) “The special linear group SL(2n,R) is a subgroup of the symplectic group
Sp(2n,R).”

(f) “The specific heat of a classical ideal gas can be made to take on any
value between Cv and Cp by subjecting it to a process of the form PV n =
constant, with a suitable value of the index n.”

(g) “Boosts (or velocity transformations from one inertial frame to another)
do not constitute a group, but boosts together with rotations of the co-
ordinate axes do constitute a group.”

(h) Let G denote the Gibbs free energy of a substance.

“
(
∂2G/∂P 2

)
T,N

must be negative definite.”

2. Fill in the blanks in the following.

(a) The Lagrangian of a particle with a single degree of freedom, q, is given
by L(q, q̇, q̈, t). The Euler-Lagrange equation of motion of the particle is
then cdots

(b) The Hamiltonian of a particle of mass m moving in an attractive inverse
square field of force is given by H = p2/(2m)−k/r, where k is a positive
constant.
(i) The time-independent constants of the motion are · · ·

(ii) The value of the total energy when the trajectory of the particle in
space is a parabola is E = · · ·

(c) The critical point of the dynamical system

ẋ = −3x, ẏ = −y + 2z, ż = −2y − z

located at (x , y , z) = · · · is a stable/unstable/asymptotically stable/higher-
order critical point (select one).
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(d) A particle of mass m moving in the (q1 , q2) plane has the Lagrangian

L =
q̇21 + q̇22

2m
− V

(√
q21 + q22

)
.

L is invariant under the continuous group of rotations about the origin
in the (q1 , q2) plane. It then follows from Noether’s Theorem that the
quantity · · · is a constant of the motion.

(e) Under a parity transformation r → −r in three-dimensional space, the
transformation properties of the charge density ρ and the scalar product
E ·B are given by ρ→ · · · and E ·B→ · · · .

(f) Let u denote the rapidity of a relativistic particle moving along the x-axis
in a frame of reference S. Let S′ be a frame of reference moving with a
velocity v with respect to S, along the x-axis of S. The rapidity of the
particle in the frame of reference S′ is then u′ = · · ·

3. Let H(q1 , . . . , qn , p1 , . . . , pn) be the Hamiltonian of a system with n degrees
of freedom. When the system is in thermal equilibrium in contact with a heat
bath at temperature T , the average value of any physical quantity A(q, p) is
given by

〈A〉 =
1
Z

∫
dnp

∫
dnq A e−βH , where Z =

∫
dnp

∫
dnq e−βH and β =

1
kBT

.

(a) Obtain a formula for the variance of H in terms of derivatives of Z with
respect to β.

(b) Assuming that H → ∞ when any pi → ±∞, show that 〈pj q̇j〉 = kBT
for each j (= 1, 2, . . . , n).

4. Consider the logistic map of the unit interval, xn+1 = f(xn) = µxn(1− xn),
where x0 ∈ [0, 1], n = 0, 1, . . . , and µ is a positive constant. The Lyapunov
exponent corresponding to an initial value x0 is defined as

λ(x0 , µ) = lim
n→∞

lim
ε→0

1
n

ln
∣∣∣∣f (n)(x0 + ε)− f (n)(x0)

ε

∣∣∣∣ ,
where f (n)(x) denotes the nth iterate of the map. (The order in which the
limits are taken is important.)

(a) Find the Lyapunov exponent for a general value of µ when (i) 0 < µ < 1
and (ii) (1 < µ < 3.

(b) Why are these values of λ independent of x0?

(c) Express xn as an explicit function of x0 in the case µ = 2.

(d) What happens to the map at µ = 3?
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5. A particle of rest mass m and charge e moves along the x-axis in a constant,
uniform electric field E = E ex . At t = 0, the particle starts from rest from
the point x = 0. The equation of motion of the particle is

d

dt

( mv√
1− (v2/c2)

)
= eE,

where v = ẋ = dx/dt. Set (mc)/(eE) = τ (note that τ represents a natural
time scale in the problem).

(a) Solve the equation of motion to find its velocity v as a function of t.

(b) Schematically sketch v as a function of t.

(c) Hence find the position x of the particle as a function of t.

6. The normalized probability density of any Cartesian component v of the ve-
locity of a molecule of mass m in a classical ideal gas in thermal equilibrium
at temperature T is given by

p(v) =
(

m

2πkBT

)1/2

exp
(
− mv2

2kBT

)
, (−∞ < v <∞).

(a) Write down the normalized probability density ρ(ε) of the energy of a
molecule.

(b) Find the normalized probability density q(u) of the relative velocity u =
v1−v2 between two molecules whose velocities are v1 and v2, respectively.
You may need the integral∫ ∞

−∞
exp (−ax2 + bx) =

√
(π/a) exp [(b2/(4a)],

where a > 0 and b is arbitrary.

7. A (2n× 2n) matrix with real elements is an element of the symplectic group
Sp (2n,R) if it satisfies the relation

MTJM = J where J =
(

0n In
−In 0n

)
,

0n and In being the (n× n) null matrix and unit matrix, respectively.

(a) Show that MT is also symplectic if M is symplectic.

(b) Given that a general symplectic matrix M can be written as M =
exp (a T ) where a is a real parameter and T is a (2n×2n) matrix, obtain
the condition that T must satisfy, by considering a to be an infinitesimal
quantity.

(c) Hence find the number r of independent generators of the group Sp (2n,R).
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(d) A canonical transformation from the 2n dynamical variables (qi , pi) to
a new set of 2n dynamical variables (Qi , Pi) leaves the canonical Pois-
son bracket relations unchanged. What is the connection between such
a transformation and a (2n× 2n) symplectic matrix?
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