Next: 4. Predictor - Corrector Up: Main Previous: 3.3 Algorithm (Runge-Kutta) method
Example
Use the Runge-Kutta method of order 4 to find the approximate solution of the IVP.
with the step size (1) 0.1, (2) 0.05 and (3) 0.025. Calculate the error and tabulate the results.
Solution: It is an exercise. See the tables 7,8 and 9.
Table 7   | 
  |||||||||
Initial x  | 
    Initial y  | 
    Stepsize h  | 
    Appx. Y  | 
    Exa. Y  | 
    Error  | 
    k1  | 
    k2  | 
    k3  | 
    k4  | 
  
0.000000000  | 
    1.000000000  | 
    0.100000000  | 
    1.000000000  | 
    1.000000000  | 
    0.000000000  | 
    0.100000000  | 
    0.110250000  | 
    0.111328877  | 
    0.123505187  | 
  
0.100000000  | 
    1.000000000  | 
    0.100000000  | 
    1.111110490  | 
    1.111111111  | 
    0.000000621  | 
    0.100000000  | 
    0.146678862  | 
    0.140292162  | 
    1.566008596  | 
  
0.200000000  | 
    1.111110490  | 
    0.100000000  | 
    1.234449921  | 
    1.250000000  | 
    0.015550079  | 
    0.123456652  | 
    0.184391026  | 
    0.175998811  | 
    2.210405014  | 
  
0.300000000  | 
    1.234449921  | 
    0.100000000  | 
    1.388373760  | 
    1.428571429  | 
    0.040197668  | 
    0.152386661  | 
    0.237394267  | 
    0.227126268  | 
    3.221717202  | 
  
0.400000000  | 
    1.388373760  | 
    0.100000000  | 
    1.583264224  | 
    1.666666667  | 
    0.083402442  | 
    0.192758170  | 
    0.315425554  | 
    0.303100092  | 
    4.940348000  | 
  
0.500000000  | 
    1.583264224  | 
    0.100000000  | 
    1.837356086  | 
    2.000000000  | 
    0.162643914  | 
    0.250672560  | 
    0.006283673  | 
    0.338743260  | 
    7.497402655  | 
  
Table 8   | 
  |||||||||
Initial x  | 
    Initial y  | 
    Stepsize h  | 
    Appx. Y  | 
    Exa. Y  | 
    Error  | 
    k1  | 
    k2  | 
    k3  | 
    k4  | 
  
0.000000000  | 
    1.000000000  | 
    0.050000000  | 
    1.000000000  | 
    1.000000000  | 
    0.000000000  | 
    0.050000000  | 
    0.052531250  | 
    0.052661057  | 
    0.055404765  | 
  
0.050000000  | 
    1.000000000  | 
    0.050000000  | 
    1.052631563  | 
    1.052631579  | 
    0.000000016  | 
    0.050000000  | 
    0.060789818  | 
    0.058647317  | 
    1.234940749  | 
  
0.100000000  | 
    1.052631563  | 
    0.050000000  | 
    1.108026472  | 
    1.111111111  | 
    0.003084639  | 
    0.055401660  | 
    0.067678251  | 
    0.065192852  | 
    1.448887960  | 
  
0.150000000  | 
    1.108026472  | 
    0.050000000  | 
    1.169566428  | 
    1.176470588  | 
    0.006904160  | 
    0.061386133  | 
    0.075762210  | 
    0.072896477  | 
    1.710476056  | 
  
0.200000000  | 
    1.169566428  | 
    0.050000000  | 
    1.238140600  | 
    1.250000000  | 
    0.011859400  | 
    0.068394281  | 
    0.085351670  | 
    0.082024537  | 
    2.038362460  | 
  
0.250000000  | 
    1.238140600  | 
    0.050000000  | 
    1.315013575  | 
    1.333333333  | 
    0.018319758  | 
    0.076649607  | 
    0.096836321  | 
    0.092947305  | 
    2.454432772  | 
  
0.300000000  | 
    1.315013575  | 
    0.050000000  | 
    1.401756539  | 
    1.428571429  | 
    0.026814889  | 
    0.086463035  | 
    0.110739875  | 
    0.106160878  | 
    2.990097511  | 
  
0.350000000  | 
    1.401756539  | 
    0.050000000  | 
    1.500357994  | 
    1.538461538  | 
    0.038103544  | 
    0.098246070  | 
    0.127776748  | 
    0.122343335  | 
    3.691048693  | 
  
0.400000000  | 
    1.500357994  | 
    0.050000000  | 
    1.613369403  | 
    1.666666667  | 
    0.053297264  | 
    0.112553706  | 
    0.148940529  | 
    0.142440137  | 
    4.625404360  | 
  
0.450000000  | 
    1.613369403  | 
    0.050000000  | 
    1.744116520  | 
    1.818181818  | 
    0.074065298  | 
    0.130148042  | 
    0.175643382  | 
    0.167799881  | 
    5.897549758  | 
  
0.500000000  | 
    1.744116520  | 
    0.050000000  | 
    1.897012232  | 
    2.000000000  | 
    0.102987768  | 
    0.152097122  | 
    0.001156677  | 
    0.180042499  | 
    7.524391368  | 
  
Table 9    | 
  |||||||||
Initial x  | 
    Initial y  | 
    Stepsize h  | 
    Appx. Y  | 
    Exa. Y  | 
    Error  | 
    k1  | 
    k2  | 
    k3  | 
    k4  | 
  
0.000000000  | 
    1.000000000  | 
    0.025000000  | 
    1.000000000  | 
    1.000000000  | 
    0.000000000  | 
    0.025000000  | 
    0.025628906  | 
    0.025644828  | 
    0.026298683  | 
  
0.025000000  | 
    1.000000000  | 
    0.025000000  | 
    1.025641025  | 
    1.025641026  | 
    0.000000000  | 
    0.025000000  | 
    0.026943420  | 
    0.026993882  | 
    0.027701006  | 
  
0.050000000  | 
    1.025641025  | 
    0.025000000  | 
    1.052403627  | 
    1.052631579  | 
    0.000227952  | 
    0.026298488  | 
    0.028385073  | 
    0.028440684  | 
    0.029205611  | 
  
0.075000000  | 
    1.052403627  | 
    0.025000000  | 
    1.080596229  | 
    1.081081081  | 
    0.000484852  | 
    0.027688835  | 
    0.029945008  | 
    0.030006771  | 
    0.030835976  | 
  
0.100000000  | 
    1.080596229  | 
    0.025000000  | 
    1.110334291  | 
    1.111111111  | 
    0.000776821  | 
    0.029192205  | 
    0.031636710  | 
    0.031705495  | 
    0.032606372  | 
  
0.125000000  | 
    1.110334291  | 
    0.025000000  | 
    1.141748121  | 
    1.142857143  | 
    0.001109021  | 
    0.030821056  | 
    0.033475403  | 
    0.033552235  | 
    0.034533273  | 
  
0.150000000  | 
    1.141748121  | 
    0.025000000  | 
    1.174983056  | 
    1.176470588  | 
    0.001487532  | 
    0.032589719  | 
    0.035478577  | 
    0.035564665  | 
    0.036635645  | 
  
0.175000000  | 
    1.174983056  | 
    0.025000000  | 
    1.210201697  | 
    1.212121212  | 
    0.001919515  | 
    0.034514630  | 
    0.037666391  | 
    0.037763169  | 
    0.038935408  | 
  
0.200000000  | 
    1.210201697  | 
    0.025000000  | 
    1.247586556  | 
    1.250000000  | 
    0.002413444  | 
    0.036614704  | 
    0.040062185  | 
    0.040171363  | 
    0.041458011  | 
  
0.225000000  | 
    1.247586556  | 
    0.025000000  | 
    1.287343191  | 
    1.290322581  | 
    0.002979389  | 
    0.038911805  | 
    0.042693097  | 
    0.042816721  | 
    0.044233135  | 
  
0.250000000  | 
    1.287343191  | 
    0.025000000  | 
    1.329703954  | 
    1.333333333  | 
    0.003629379  | 
    0.041431312  | 
    0.045590828  | 
    0.045731364  | 
    0.047295558  | 
  
0.275000000  | 
    1.329703954  | 
    0.025000000  | 
    1.374932496  | 
    1.379310345  | 
    0.004377849  | 
    0.044202815  | 
    0.048792593  | 
    0.048953027  | 
    0.050686250  | 
  
0.300000000  | 
    1.374932496  | 
    0.025000000  | 
    1.423329214  | 
    1.428571429  | 
    0.005242215  | 
    0.047260984  | 
    0.052342310  | 
    0.052526283  | 
    0.054453736  | 
  
0.325000000  | 
    1.423329214  | 
    0.025000000  | 
    1.475237865  | 
    1.481481481  | 
    0.006243617  | 
    0.050646651  | 
    0.056292097  | 
    0.056504080  | 
    0.058655835  | 
  
0.350000000  | 
    1.475237865  | 
    0.025000000  | 
    1.531053671  | 
    1.538461538  | 
    0.007407867  | 
    0.054408169  | 
    0.060704181  | 
    0.060949699  | 
    0.063361868  | 
  
0.375000000  | 
    1.531053671  | 
    0.025000000  | 
    1.591233304  | 
    1.600000000  | 
    0.008766696  | 
    0.058603134  | 
    0.065653332  | 
    0.065939270  | 
    0.068655523  | 
  
0.400000000  | 
    1.591233304  | 
    0.025000000  | 
    1.656307281  | 
    1.666666667  | 
    0.010359386  | 
    0.063300586  | 
    0.071230019  | 
    0.071565026  | 
    0.074638568  | 
  
0.425000000  | 
    1.656307281  | 
    0.025000000  | 
    1.726895488  | 
    1.739130435  | 
    0.012234947  | 
    0.068583845  | 
    0.077544527  | 
    0.077939565  | 
    0.081435739  | 
  
0.450000000  | 
    1.726895488  | 
    0.025000000  | 
    1.803726783  | 
    1.818181818  | 
    0.014455035  | 
    0.074554201  | 
    0.084732382  | 
    0.085201482  | 
    0.089201250  | 
  
0.475000000  | 
    1.803726783  | 
    0.025000000  | 
    1.887663979  | 
    1.904761905  | 
    0.017097926  | 
    0.081335758  | 
    0.092961594  | 
    0.093522900  | 
    0.098127536  | 
  
0.500000000  | 
    1.887663979  | 
    0.025000000  | 
    1.979736026  | 
    2.000000000  | 
    0.020263974  | 
    0.089081882  | 
    0.000049597  | 
    0.097986323  | 
    0.107923254  | 
  
![]()
![]()
Next: 4. Predictor-Corrector Up: Main Previous: 3.3 Algorithm (Runge-Kutta) method