Exercise

  1. Show that
    $\Delta^r f_k = \nabla ^r f_{k+r}= \delta ^r f_{k+
\frac{r}{2}}$
    $\nabla^r f_k = \Delta ^r f_{k-r}= \delta ^r f_{k-
\frac{r}{2}}$
    $\delta^rf_k=\Delta^rf_{k-
\frac{r}{2}}=\nabla^rf_{k+\frac{r}{2}}$
    $\Delta\nabla f_k=\nabla\Delta f_k=\delta^2f_k$
  2. Establish the relations
    $\Delta = E \nabla$
    $\nabla=E^{-1}\Delta$
    $E^{\frac{1}{2}}\Delta=E^{\frac{1}{2}}\nabla=\delta$
    $\Delta\nabla=\nabla\Delta=\Delta-\nabla=\delta^2$
    $\mu\delta=\frac{1}{2}(\Delta+\nabla)$
    $E^{+\frac{1}{2}}=\mu \pm \frac{1}{2}\,\,\delta$
    $\mu^2=1+\frac{1}{4}\delta^2$
    $\mu=\frac{1}{2}(E^{\frac{1}{2}}+E^{-\frac{1}{2}})$
  3. From the following table of values of $f(x)=Sinhx$ find $f'(0.4)$ using central difference with h=0.001 and 0.002. which of these is the more accurate?
    x Sinhx
    0.398 0.408591
    0.399 0.409671
    0.400 0.410752
    0.407 0.411834
    0.402 0.412915
  4. Using Newton's forward difference formula, find an approximation to $f'''(x_0)$ based on the points and determine the error of this approximation.
  5. Derive the error of the trapezoidal rule over the internal by means of Taylor's theorem.
  6. Determine h so that the trapezoidal rule will yield the value of

    \begin{displaymath}I=\int\limits_{0}^{1}e^{-x^{2}}dx\end{displaymath}

    correct to six significant figures. Find the value of I using the computer.