Module 1 : Real Numbers, Functions and Sequences
Lecture 2 : Convergent & Bounded Sequences [ Section 2.2 : Convergent Sequences ]
2.2.4   Theorem:
  Limit a sequence is unique.
                                                                                                                                                    
   
  Proof:
  Suppose   as well as   with  , say  .
 
   Take . Then by definition, there exists such that
 
  and
 
   Thus, for ,
 
  which is a contradiction.  Hence, .                                                                                           Back
10