Exercise 1

Calculate the solid angle subtended by an octant of a sphere at the centre of the sphere.
(Ans. $\pi / 2$)
The flux per unit solid angle is known as the intensity .

Exercise 3

Find the electric field both inside and outside a spherical shell of radius carrying a uniform charge .

Exercise 4

Find the electric field in the region between two infinite parallel planes carrying charge densities $+\sigma$ and $-\sigma$.

Exercise 5

Find the electric field both inside and outside a spherical shell of radius R carrying a uniform charge Q.

Exercise 6

Find the electric field both inside and outside a long cylinder of radius R carrying a uniform volume charge density ρ.
(Hint: Take the gaussian surface to be a finite concentric cylinder of radius r (with $r<R$ and $r>R$), as shown)

Exercise 7

A very long cylinder carries a charge density $\rho=k r$, where r is the distance from the axis of the cylinder. Find the electric field at a distance $r<R$.
(Ans. $\left.\left(1 / 3 \epsilon_{0}\right) k r^{2} \hat{r}\right)$

Exercise 8

A charge Q is located at the center of a cube of side a. Find the flux through any of the sides.
(Ans. $Q / 6 \epsilon_{0}$)

