

Calculate the solid angle subtended by an octant of a sphere at the centre of the sphere.

(Ans. $\pi/2$)

The flux per unit solid angle is known as the intensity.

Exercise 3

Find the electric field both inside and outside a spherical shell of radius carrying a uniform charge .

Exercise 4

Find the electric field in the region between two infinite parallel planes carrying charge densities $+\sigma$ and $-\sigma$.

Exercise 5

Find the electric field both inside and outside a spherical shell of radius R carrying a uniform charge $\mathcal Q$.

Exercise 6

Find the electric field both inside and outside a long cylinder of radius $\,R\,$ carrying a uniform volume charge density $\,
ho\,$.

(Hint : Take the gaussian surface to be a finite concentric cylinder of radius r (with r < R and r > R), as shown)

Exercise 7

A very long cylinder carries a charge density ho = k r, where r is the distance from the axis of the cylinder. Find the electric field at a distance r < R.

(Ans.
$$(1/3\epsilon_0)kr^2\hat{r}$$
)

Exercise 8

A charge Q is located at the center of a cube of side a . Find the flux through any of the sides.

(Ans.
$$Q/6\epsilon_0$$
)