Exercise 1

A vector field is given by $\vec{F}=-y \hat{\imath}+x \hat{\jmath}+x^{2} \hat{k}$. Calculate the line integral of the field along the triangular path shown above. Verify your result by Stoke's theorem.
(Ans. 1)
(Hint : To calculate the line integral along a straightline, you need the equation to the line. For instance, the equation to the line BO is $y=2 x$. Check that $\int_{A B} \vec{F} \cdot \overrightarrow{d l}=-\int y d x+\int x d y=1$.)

Exercise 2

by calculating the line integral about the closed contour in the form of a circle at $z=\frac{\sqrt{2}}{4}$ and also calculating the surface integral of the open surface of the cylinder below it, as shown. (Hint : Express the curl in cylindrical coordinates and take care of the signs of the surface elements from the curved surface

Exercise 3

Let C be a closed curve in the $x-y$ plane in the shape of a quadrant of a circle of radius R.
If $\vec{F}=\hat{\imath} y+\hat{\jmath} z+\hat{k} x$. calculate the line integral of the field along the contour shown in a direction
which is anticlockwise when looked from above the plane $(z>0)$. Take the surface of the quadrant enclosed by the curve as the open surface bounded by the curve and verify Stoke's theorem.

(Ans. $-\pi R^{2} / 4$)

Exercise 4

Verify Stoke's theorem for a vector field $2 z \hat{\imath}+3 x \hat{\jmath}+5 y \hat{k}$ where the contour is an equatorial circle of radius R and is anticlockwise when viewed from above and the surface is the hemisphere shown in the preceding example.
(Ans. $3 R^{2} \pi$)

Exercise 5

Show that

$$
\nabla \times(\nabla \times \vec{F})=\nabla(\nabla \cdot \vec{F})-\nabla^{2} \vec{F}
$$

