Exercise 1

done if the particle is taken from the point $(0,0,0)$ to the point $(2,1,3)$ along straight
line segment connecting $(0,0,0) \rightarrow (0,1,0) \rightarrow (2,1,0) \rightarrow (2,1,3)$. What
would be the work done if the particle directly moved to the final point along the straightline connecting to origin.
(Ans. —16, —13.8.)
Exercise 2
A vector field is given by $ec{F} = \langle 2\mathbf{x} + 3\mathbf{y} angle \hat{\imath} + \langle 3\mathbf{x} + 2\mathbf{y} angle \hat{\jmath}$
Evaluate the line integral of the field around a circle of unit radius traversed in clockwise fashion.
(Ans. 6 家)
Exorcice 2
Exercise 3 Evaluate the line integral of a scalar function xy along a parabolic path $y = x^2$
Exercise 3 Evaluate the line integral of a scalar function xy along a parabolic path $y = x^2$ connecting the origin to the point $(1, 1)$.
Exercise 3 Evaluate the line integral of a scalar function xy along a parabolic path $y = x^2$ connecting the origin to the point $(1, 1)$. [Hint : Remember that the arc length along a curve is given by $\sqrt{(dx)^2 + (dy)^2}$. The
Exercise 3 Evaluate the line integral of a scalar function xy along a parabolic path $y = x^2$ connecting the origin to the point $(1, 1)$. [Hint : Remember that the arc length along a curve is given by $\sqrt{(dx)^2 + (dy)^3}$. The curve can be parametrized by $x = t$ and $y = t^2$.] [Ans. $(25\sqrt{5}+1)/120$]
Exercise 3 Evaluate the line integral of a scalar function \mathbf{xy} along a parabolic path $\mathbf{y} = \mathbf{x}^2$ connecting the origin to the point $(1, 1)$. [Hint : Remember that the arc length along a curve is given by $\sqrt{(d\mathbf{x})^2 + (d\mathbf{y})^2}$. The curve can be parametrized by $\mathbf{x} = t$ and $\mathbf{y} = t^2$.] [Ans. $(25\sqrt{5}+1)/120$] Exercise 4
Exercise 3 Evaluate the line integral of a scalar function xy along a parabolic path $y = x^2$ connecting the origin to the point $(1,1)$. [Hint : Remember that the arc length along a curve is given by $\sqrt{(dx)^2 + (dy)^3}$. The curve can be parametrized by $x = t$ and $y = t^2$.] [Ans. $(25\sqrt{5}+1)/120$] Exercise 4 Find the flux of the vector field $\vec{V} = Axi + By^2$ ithrough a rectangular surface in
Exercise 3 Evaluate the line integral of a scalar function xy along a parabolic path $y = x^2$ connecting the origin to the point $(1, 1)$. [Hint : Remember that the arc length along a curve is given by $\sqrt{(dx)^2 + (dy)^3}$. The curve can be parametrized by $x = t$ and $y = t^2$.] [Ans. $(25\sqrt{5}+1)/120$] Exercise 4 Find the flux of the vector field $\vec{V} = Ax^2 + By^2$ jthrough a rectangular surface in the x-y plane having dimensions $x \times b$. The origin of the coordinate system is at one of

(Ans.

 $Bab^3/3$)

Click here for Animation

Exercise 5

Find the flux through a hemispherical bowl with its base on the x-y plane and the origin at the centre of the base. The vector field, in spherical polar coordinates is $\vec{V} = r \sin \theta \hat{r} + \hat{\theta} + \hat{\phi}.$

(Ans.
$$\pi(1 + \pi/2)$$
)

Exercise 6

Find the flux of the vector field $ec{V}=2\hat{
ho}-3\hat{r}\hat{ec{
ho}}+z\hat{
ho}\hat{k}$ through surfaces of a right cylinder of radius 1 and height 2. The base of the cylinder is in the z = 0 plane with the origin at the centre of the base.

(Ans. 28π/3)