Exercise 1

A force $\overrightarrow{F^{\prime}}=z y^{2}+\left(x^{2}-z^{3}\right)^{3}-x z^{2}$ 害 acts on a particle．Calculate the work

 would be the work done if the particle directly moved to the final point along the straightline connecting to origin．
（Ans．$-16,-138$ ）

Exercise 2

Evaluate the line integral of the field around a circle of unit radius traversed in clockwise fashion．
（Ans．© \mathbf{F} ）

Exercise 3

Evaluate the line integral of a scalar function zyalong a parabolic path $\bar{y}:=\boldsymbol{x}^{Z}$ connecting the origin to the point $\frac{1}{2}, \underline{1}$ ．

Exercise 4

Find the flux of the vector field $\overrightarrow{\vec{V}}=\alpha_{a} x+B_{8} y^{2}$ githrough a rectangular surface in the x－y plane having dimensions 昰解．The origin of the coordinate system is at one of the corners of the rectangle and the x －axis along its length．
（Ans．

$\left.B a b^{3} / 3\right)$

Exercise 5

Find the flux through a hemispherical bowl with its base on the $x-y$ plane and the origin at the centre of the base. The vector field, in spherical polar coordinates is

Exercise 6

 cylinder of radius 1 and height 2. The base of the cylinder is in the $z=$ plane with the origin at the centre of the base.
(Ans. $38 \pi / 3$)

