Exercise 1

Show that the Jacobian of the inverse transformation from polar to cartesian
is $1 / \mathrm{F}=1 / \sqrt{x^{2}+\frac{3}{3}}$

Exercise 2

 between circles of radii 1 and 2 that lies in the first quadrant.
(Ans. 15 s.

Exercise 3

Evaluate the Gaussian integral $\bar{F}=\int_{0}^{\infty \times 2} e^{-x^{2}} z^{2} x$
[Hint : The integration cannot be done using cartesian coordinates but is relatively easy using polar coordinates and properties of definite integrals. By changing the

Transform this to polar. Range of integration for ${ }^{2}$ is from E and that of from D_{to} 罻 (why ?)]

$$
\text { [Answer: } \sqrt{6}
$$

Exercise 4

Find the cylindrical coordinate of the point $3 \hat{\imath}+4 \hat{\jmath}+\hat{k}$.
[Hint : Determine ρ and $\tan \theta$ using above transformation]

```
(Ans. 5\hat{\rho}+\mp@subsup{\operatorname{tan}}{}{-1}(4/3)\hat{0}+\hat{k})
```


Exercise 5

A particle moves along a spherical helix. its position coordinate at time tis given by

$$
z=\frac{\cos t^{2}}{\sqrt{1+t^{2}}}, y=\frac{\sin t}{\sqrt{1+\frac{x^{2}}{2}}}, z=\frac{t}{\sqrt{1+t^{2}}}
$$

Express the equation of the path in spherical coordinates.
(Ans.

Exercise 6

Using direct integration find the volume of the first octant bounded by a sphere $z^{3}+y^{3}+x^{3}=9$

Exercise 7

Using direct integration find the volume of the first octant bounded by a sphere $x^{2}+y^{2}+x^{2}=9$

