Exercise 1

Derive expression (B).

Exercise 2

Derive the expression (D).

Exercise 3

For a two band model of silicon, the band gap is 1.11 eV. Taking the effective masses of electrons and holes as $m_e=1.08m_0$

and $m_h=0.81m_0$, calculate the intrinsic carrier concentration in silicon at 300 K.

(Ans. 1.2×10^{16} m $^{-3}$.)

Exercise 4

Show that, if the effective masses of electrons and holes are not equal, the position of the Fermi energy for an intrinsic semiconductor is given by

$$E_F=rac{E_c+E_v}{2}+rac{3}{4}kT\lnrac{m_e}{m_h}$$

Exercise 5

A sample of an intrinsic semiconductor has a band gap of 0.7 eV, assumed independent of temperature.

Taking $\,\mu_h=0.5\mu_e$ and $\,m_h=2m_e$, find the relationship between the conductivity at 200 K and 300 K.

(Ans. ratio of conductivity = 2014.6, $\,E_F(300K) - E_F(200K) = 4.33 imes 10^{-3}$ eV)

Exercise 6

Calculate the ionization energy of a donor impurity in Ge. The effective mass of electrons is $0.12m_0$ and the dielectric constant is

16.

(6.4 meV)

Exercise 7

In a p-type semiconductor 40% of atoms are ionized at 300 K. Find the location of the Fermi level with respect to the acceptor level.

($E_a - E_F = 0.016$ eV)

Exercise 8

A sample of Ge at 300 K is doped with 3×10^{21} /m³ of donor atoms and 4×10^{21} /m³ acceptor atoms. Find the densities of electrons and holes at 300 K. (Ans. $n = 5.76 \times 10^{17}$ /m³, $p = 10^{21}$ /m³)

Exercise 9

Germanium has ionized acceptor density of 4×10^{21} /m⁻³ and donor density of 6×10^{21} /m⁻³. Taking the band gap to be 0.67 eV, calculate the equilibrium density of majority and minority carriers at 450 K and also the Fermi energy. [Hint : Using the intrinsic concentration at 300 K, find n_i at 450 K and use the expression for n.]

(Ans. $n=2.02 imes 10^{21}~/{
m m}^3~p=9.62 imes 10^{17}~/{
m m}^3~E_F^n-E_F^i=0.143$ eV)