
Exercise 1

Draw a picture of covalent band formation in Ammonia molecule.

(Hint : Nitrogen has 7 electrons with electronic configuration $\,k=0$).

Exercise 2

Which one of the bands has higher effective mass near $\,k=0\,$?

Exercise 3

The energy of an electron in the valence band of a certain one dimensional semiconductor may be written as

$$E = E_0(1 - \cos(ka))$$

where E_0 and a are constants. Sketch the variation of the energy and of the effective mass of the electron as functions of k .

Calculate the effective mass at k=0 and at $k=\pi/a$ given that a=3Åand $E_0=0.75$ eV.

(Ans. 1.02×10^{-30} kg)

Exercise 4

Electrons in a two dimensional square lattice are in a band whose structure is given by

$$E(k) = E_0 - 2t(\cos(k_x a) + \cos(k_y a))$$

where E_0,t and a are constants. Analyze the behaviour of electrons near the centre (0,0) and at the edges ($\pm\pi/a,\pm\pi/a$)

of the Brillouin zone and show that near these points, the structure may be approximated as $E(k)\sim {
m constant}\ +rac{\hbar^2k^2}{2m^*}$

where m^st is the effective mass. Determine the value of the effective mass at k=0.

(Ans. 3.83×10^{-31} kg)

Exercise 5

The E-k relationship for the conduction band of Ge is given by

$$E = E_c + \frac{\hbar^2}{2m_l^*} k_x^2 + \frac{\hbar^2}{2m_t^*} (k_y^2 + k_z^2)$$

where E_c is the energy of the bottom of the conduction band. The *longitudinal effective mass* m_l^* is 1.6 times the free electron mass while the *transverse effective mass* m_t^* is 0.082 times the free electron mass. Show that the energy surface is an ellipsoid of revolution with the major and minor axes being respectively $\sqrt{(2m_l/\hbar^2)(E-E_c)}$ and $\sqrt{(2m_t/\hbar^2)(E-E_c)}$.