Exercise 1

Show that, in terms of the wavelength interval, the Rayleigh Jeans' law can be expressed as
$u(\lambda) d \lambda=\frac{8 \pi k T}{\lambda^{4}} d \lambda$

Exercise 2

Prove Eqn. (3).
(Hint : Treat β as a continuous variable and show that the right hand side is $-\frac{\partial}{\partial \beta} \ln \sum \exp (-n h \nu \beta)$).

Using $\bar{\varepsilon}$ to be the average energy of the mode instead of $k T$, the energy density is given, instead of Eqn. (2), by

$$
u(\nu) d \nu=\frac{8 \pi h \nu^{3}}{c^{3}} \frac{1}{e^{h \nu \beta}-1} d \nu
$$

Exercise 3

Show that Eqn. (4) reduces to Rayleigh - Jeans' expression for long wavelengths i.e. as $\nu \rightarrow 0$. [Hint : use $e^{x} \approx 1+x$ for $x \ll 1]$

Exercise 4

Show that, in terms of wavelength, the expression for radiant intensity is given by

$$
\begin{equation*}
I(\lambda) d \lambda=\frac{2 \pi h c^{2}}{\lambda^{5}} \frac{1}{\exp (h c \beta / \lambda)-1} \tag{5}
\end{equation*}
$$

Exercise 5

A spherical black body of radius 2 m is at $27^{\circ} \mathrm{C}$. Find the power radiated.
[Ans. 22077 watts]

Exercise 6

Total energy radiated from a blackbody source is collected for one minute and is used to heat a quantity of water. The temperature
of water is found to increase from $20^{\circ} \mathrm{C}$ to $20.5^{\circ} \mathrm{C}$. If the absolute temperature of the blackbody were doubled and the experiment repeated with the same quantity of water at $20^{\circ} \mathrm{C}$, find the temperature of water.(Ans. $28^{\circ} \mathrm{C}$)

Exercise 7

Using the above distances and the calculated temperature of the sun, estimate the equilibrium temperature of the earth.
(Hint : First determine the total amount of power collected by the earth by observing that πR_{E}^{2} section of the earth collects all the power falling on the earth. In equilibrium, this amount is equal to the power radiated from the earth..Ans. 278.7 K .)

Exercise 8

The surface temperature of the sun is about 6000 K . What is the wavelength at which the sun emits its peak radiation intensity ?
(Ans. 483 nm)

Exercise 9

Taking the mean temperature of the surface of the earth to be $10^{\circ} \mathrm{C}$, calculate the wavelength at which the earth emits maximum radiation.
(Ans. 10μ, i.e. the earth emits mostly in infrared.)

Exercise 10

What fraction of the radiant energy in a cavity is below $\lambda_{\max }$?
(Ans. 0.25)

Exercise 11

The black body spectrum of an object A has its peak intensity at 200 nm while that of another object of same shape and size has its peak at 600 nm . Compare radiant intensities of the two bodies.
(Ans. A radiates 81 times more than B)

