
Exercise 1

Consider an Iron - copper thermocouple. Suggest a method of measuring the temperature of a junction using a voltmeter with copper lead wires.

Exercise 2

Consider an Iron - copper thermocouple. Suggest a method of measuring the temperature of a junction using a voltmeter with copper lead wires.

For the circuit shown below, calculate the voltage measured at the copper terminals under isothermal conditions. Use the table for thermo-emf. (Hint. you do not need thermo emf data at 20° C.)(4.1 mV)

Exercise 3

From the table of Seebeck coefficients, calculate the Peltier coefficient of an Iron-copper thermocouple at 0° C. (Ans. 3.4 V)

Exercise 4

A chromel-constantan thermocouple with the cold junction at 0° C has a linear variation of the open circuit voltage with the temperature of the hot junction. Using the thermo-emf values at 100° C from the table, calculate (i) the thermo-emf when the hot junction is maintained at 150° C, (ii) Peltier coefficient at 150° C and (iii) the difference between Thomson emf at this temperature. [Hint : Emf is zero when the hot junction is at 0° C]

(Ans. (i) 9.5 mV (ii) 26.7 mV (iii) 0)