Exercise 01

A conducting circle having a radius R_{0} at time $t=0$ is in a constant magnetic field B perpendicular to its plane. The circle expands with time with its radius becoming $R=R_{0}\left(1+\alpha t^{2}\right)$ at time t. Calculate the emf developed in the circle.
(Ans. $-4 \pi R_{0}^{2} \alpha t\left(1+\alpha t^{2}\right) B$)

Exercise 1

The figure shows two coplanar and concentric rings of radii R_{1} and R_{2} where $R_{1} \gg R_{2}$. Determine the mutual inductance of the coils. Solve the problem by considering the current to be changing in either of the coils.

(Ans. $\mu_{0} \pi R_{2}^{2} / 2 R_{1}$).

Exercise 2

A toroidal coil of rectangular cross section, with height h has N tightly wound turns. The inner radius of the torus is a and the outer radius b. A long wire passes along the axis.

The ends of the wire are connected by a semi-circular arc. Find the mutual inductance. Show explicitly that $M_{21}=M_{12}$.
(Hint : When the current flows in the turns of toroid, the field at a distance r from the toroid axis is $\mu_{0} N I / 2 \pi r$. The semicircular area traps flux only in one rectangular turn of height h and width $b-a$. Answer : $\left.\mu_{0} N h / 2 \pi \ln (b / a).\right)$

