Exercise 1

Show that a possible choice of the vector potential for a constant magnetic field \vec{B} is given by $\vec{A} = (1/2)\vec{B} \times \vec{r}$. Can you construct any other *vecA*?

(Hint : Take $ec{B}$ in z-direction, express $ec{vecA}$ in component form and take its curl.)

Exercise 2

Obtain an expression for the vector potential inside a cylindrical wire of radius $\,R$ carrying a current $\,I$.

(Ans. $-\mu_0 I r^2/4\pi R^2$)