Exercise 1

Show that a possible choice of the vector potential for a constant magnetic field \vec{B} is given by $\vec{A}=(1 / 2) \vec{B} \times \vec{r}$. Can you construct any other $v e c A$?
(Hint : Take \vec{B} in z-direction, express vec A in component form and take its curl.)

Exercise 2

Obtain an expression for the vector potential inside a cylindrical wire of radius R carrying a current I.
(Ans. $-\mu_{0} I r^{2} / 4 \pi R^{2}$)

