Module 2 : Electrostatics
Lecture 8 : Coulomb's Law
 

where the upper limit of integration $\theta_0$is given by

\begin{displaymath}\tan\theta_0 =\frac{(L/2)}{x}\end{displaymath}

or equivalently,

\begin{displaymath}\sin\theta_0 = \frac{(L/2)}{(\frac{L^2}{4}+ x^2)^{1/2}}\end{displaymath}

The field due to the rod, therefore, is

\begin{displaymath}E = \frac{1}{2\pi\epsilon_0}\frac{Q}{x}\frac{1}{(L^2+4x^2)^{1/2}}\end{displaymath}

directed along OP.

 

   Back

1
2
3
4
5
6
7
8