
Practice problems for the video course on
Pattern Recognition

Bayes Classifier and related issues (Modules 1-2)

1. Consider a 2-class PR problem with feature vectors in ℜ2. The class
conditional density for class-I is uniform over [1, 3]× [1, 3] and that for
class-II is uniform over [2, 4] × [2, 4]. Suppose the prior probabilities
are equal. Which is Bayes classifier? (For this problem, assume that we
are using 0-1 loss function and hence Bayes classifier minimizes proba-
bility of misclassification). Is Bayes Classifier unique for this problem?
What would be the probability of misclassification by Bayes Classifier?
Consider a hyperplane given by x + y = 5 in ℜ2. Is this a Bayes (opti-
mal) clasifier? Suppose the prior probabilities are changed to p1 = 0.4
and p2 = 0.6. What is a Bayes classifier now? How good would the
earlier hyperplane be now?

2. Suppose that density for class-I is same as in the previous problem but
the density for class-II is changed to uniform density over [2, 8]× [2, 8]
and suppose that the prior probabilities are equal. What would be the
Bayes classifier now? How good would the earlier hyperplane classifer
be now?

3. Consider a 2-class PR problem with feature space ℜ. Let p1 and p2

be the prior probabilities. Let the class conditional density for Class-1
be exponential with parameter λ and that for Class-2 be normal with
mean µ and variance σ2. Derive the Bayes classifier for the 0–1 loss
function. Specify any one special case when this Bayes classifier would
be a linear discriminant function.

4. Consider a 2-class problem with d Boolean features. Let pij = Prob[Xi =
1|X ∈ Cj], i = 1, · · · , d and j = 0, 1, where X = [X1 · · · Xd]

T is the
feature vector and C0, C1 are the two classes. We assume that dif-
ferent features are stochastically independent. Suppose pi0 = p and
pi1 = (1− p), i = 1, · · · , d where p > 0.5. The prior probabilities of the
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two classes are equal. Assume that d is odd. Show that the minimum
probability of error classifier is the decision rule: ”Decide X ∈ C0 if
∑d

i=1
xi > d

2
; else decide X ∈ C1”.

5. Consider a 2-class problem with feature space ℜ and equal prior prob-
abilities. Let the class conditional densities be given by

fi(x) =
1

πb

1

1 +
(

x−ai

b

)2
i = 1, 2

where a1, a2, b are parameters of the density functions. Assume a1 < a2.
Find the Bayes classifier (under 0–1 loss function). Show that the
minimum probability of error is given by
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6. Consider a 2-class PR problem with feature space ℜ. Let p1 and p2

be the prior probabilities and let the two class conditional densities be
exponential with parameters λ1 and λ2 respectively. Derive the Bayes
classifier for the 0–1 loss function. For λ1 = 2, λ2 = 1 and p1 = p2,
derive an expression for the Bayes error.

7. Consider a 2-class PR problem with feature space ℜ. Suppose the class
conditional densities are normal with equal variances. Specify some
conditions under which the Neymann-Pearson classifier would be same
as the Bayes classifier under 0-1 loss function.

Density Estimation (Modules 3-5)

8. Suppose we have n iid samples from a geometric distribution. Find
the maximum likelihood estimator for the parameter p. (If X is geo-
metrically distributed, its probability mass function is: fX(x) = (1 −
p)x−1 p, x = 1, 2, · · ·). For the same problem, suppose we want to use
Bayesian estimation. What would be the conjugate prior? What is the
MAP estimate for p in this case?
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9. Suppose a class conditional density is uniform over [0, θ] with θ as
the unknown parameter. We want Maximum Likelihood estimate of
θ based on n iid samples. (i). Suppose n = 4 and the four samples
are: 0.3, 0.1, 0.7 and 0.5. Sketch the graph of the likelihood function
L(θ|D) versus θ for the range 0 ≤ θ ≤ 1. (ii). Show that the maximum
likelihood estimate of θ is given by θ̂ = maxi{Xi}.

10. We want to estimate the probability, p, of getting a head for a given
coin. Our data is a sample of three tosses all of which have turned
up heads. Choose a suitable conjugate prior and derive the Bayesian
estimate for p. Explain how the parameters of the prior affect our final
estimate for p. What would be the maximum likelihood estimate of p

given this data.

11. Let a class conditional density be a (one dimensional) normal distribu-
tion with mean µ0 and variance 10000. Suppose we assume a density
model as a normal density with mean µ & variance 1, and then estimate
µ from the data. Suppose we have a large amount of training data. Will
the estimated µ be close to µ0? If we use the estimated density as the
class conditional density, how good would be the performance of the
classifier?

12. Consider a two class problem with one dimensional feature space. Sup-
pose we have six training samples: x1, x2, x3 from one class and x4, x5, x6

from the other class. Suppose we want to estimate the class conditional
densities nonparametrically using a kernel density estimate with Gaus-
sian window with width parameter σ. Write an expression for the Bayes
classifier (under 0–1 loss function) which uses these estimated densities.

13. Suppose we have N data points each for the two classes. Consider
the two scenarios. In one case we assume that the class conditional
densities are normal, use maximum likelihood estimation to learn the
densities and implement Bayes classifier with the learnt densities. In
the other case, we use a non-parametric method using Gaussian window
or kernel function to estimate the class conditional densities and then
implement the Bayes classifier with these estimated densities. Com-
pare the relative computational effort needed to classify a new pattern
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using the classifiers in the two cases. (You can assume that the prior
probabilities are equal and that we are using a 0-1 loss function).

14. Consider the parzen window estimate of a density given by

f̂n(x) =
1

n

n
∑

i=1

1

hn

φ

(

x − xi

hn

)

Let the function φ be given by φ(x) = exp(−x) for x > 0 and it is zero
for x ≤ 0. Suppose the true density (from which samples are drawn) is
uniform over [0, a]. Show that the expectation of the parzen window
estimate is given by

Ef̂n(x) =















0 for x < 0
1

a

(

1 − e−x/hn

)

for 0 ≤ x ≤ a
1

a

(

ea/hn − 1
)

e−x/hn for x ≥ a

Is this a good approximation to uniform density? Explain.

Linear models (Module 6)

15. Consider 2-class PR problems with n Boolean features. Consider two
specific classification tasks specified by the following: (i) a feature vec-
tor X should be in Class-I if the integer represented by it is divisible by
4, otherwise it should be in Class-II; (ii) a feature vector X should be
in Class-I if it has odd number of 1’s in it, otherwise it is in Class-II. In
each of these two cases, state whether the classifier can be represented
by a Perceptron; and, if so, show the Perceptron corresponding to it; if
not, give reasons why it cannot be represented by a Perceptron.

16. Consider 2-class PR problems with feature vector in ℜd. Consider the
classification tasks specified by the following: (i) X should be in class
C0 if all the components of X are positive; otherwise it should be in
class C1; (ii). X should be in class C0 if a majority of the components
of X are positive, otherwise it should be in class C1; (iii). X should be
in class C0 if sum of the components of X that are positive is more than
the absolute value of the sum of components of X that are negative;
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otherwise it should be in class C1. In each of these cases, state whether
the classifier can be represented by a Perceptron; and, if so, show the
Perceptron corresponding to it; if not, give reasons why it cannot be
represented by a Perceptron.

17. Consider the incremental version of the Perceptron algorithm. If, at
iteration k, we misclassified the next pattern then we correct the weight
vector as: W (k+1) = W (k)+X(k). However, this does not necessarily
ensure that W (k + 1) will classify X(k) correctly. Suppose we change
the algorithm so that when we misclassify a pattern, we change the
weight vector by an amount that ensures that after the correction the
weight vector correctly classifies this pattern. Will this new version of
the Perceptro algorithm also converge in finite iterations if the classes
are linearly separable? Explain.

18. Consider a 3-class problem with a linear classifier specified through
three discriminant functions: gi(X) = W T

i X + wi0, i = 1, 2, 3. The
classifier will assign X to class i if gi(X) ≥ gj(X), ∀j. Show that the
decision regions of such a linear classifier are convex. Suppose X ∈ ℜ2

and wi0 = 0,∀i. Draw a sketch showing the three vectors Wi and the
decision regions of the three classes.

19. Consider a classification problem with K classes: C1, · · · , CK . We say
that a training set of examples is linearly separable if there are K

functions, gj(X) = W T
j X + wj0, j = 1, 2, · · · , K such that gi(X) >

gj(X), ∀j 6= i whenever the training pattern X belongs to Ci. A train-
ing set of examples is said to be totally linearly separable if the examples
of each class can be separted from all other examples by a hyperplane.
Show that totally linearly separable implies linearly separable; but the
converse need not be true.

20. Consider a two class problem where class conditional densities are nor-
mal with equal covariance matrices. Suppose we have a large amount of
training data. Can you say something about the relationship between
a classifier based on Fisher linear discriminant and the Bayes classifier
that minimizes probability of misclassification.

21. Let X ∈ ℜd denote feature vector and let y ∈ {−1, +1} denote class
labels. Let Σ denote the covariance matrix of X. Let µ1 = E[X|y =
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+1] and µ2 = E[X|y = −1]. Let p1 = P [y = +1] and p2 = P [y = −1].
Suppose p1 = p2. Suppose we want to find W ∈ ℜd and w0 ∈ ℜ to
minimize the mean square error given by E[W T X + w0 − y]2. Show
that W ∝ Σ−1(µ1 − µ2). Based on this, what can you say about the
quality of a linear classifier in a 2-class problem learnt through least
squares approach if the class conditional densities are normal with equal
covariance matrices.

22. Consider a one dimensional regression problem with X ∈ ℜ as the
feature and Y ∈ ℜ as the target. Suppose that the joint distribution
of X,Y is Gaussian. Show that optimal regression function (which
minimizes mean squared error) would be linear.

Statistical Learning Theory (Module 7)

23. Consider the following ‘guess-the-number’ game. The teacher picks
some number, c∗, from the interval [0, 1]. The learner is given a set of
examples of the form {(xi, yi), i = 1, . . . , n} where xi ∈ [0, 1] and yi = 1
if xi ≤ c∗ and yi = 0 if xi > c∗. Suggest a PAC learning algorithm for
this problem. That is, give an algorithm that takes as input n examples
and outputs a number c in the interval [0, 1]; and then show that given
any ǫ, δ, the difference between c and c∗ would be less than ǫ with a
probability greater than (1 − δ) if n is sufficiently large.

24. Consider a variation of the game in the previous problem where, instead
of being given the examples, the learner can choose his examples. That
is, at each instant i, the learner can choose any xi ∈ [0, 1] and the
teacher would respond with a yi which is 1 or 0 based on whether or
not xi ≤ c∗. The learner can use all the information he has till i to
decide on xi. Suggest a strategy for the learner to choose his examples
and to learn c∗. What can you say about the number of examples
needed (for a given accuracy of learning) in this case in comparison to
the case in the previous problem?

25. A monomial over Boolean variables is a conjunction of literals. A literal
is a variable or its compliment. For example, x1, x2x3, x̄1x2x3 are all
monomials over three Boolean variables. Here, x̄1 denotes the literal
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which is the compliment of x1. (It may be noted that the total number
of monomials over n variables is 3n). Consider a 2-class problem with n

Boolean features. Suppose we know that all patterns can be correctly
classified by some monomial. (That is, the correct monomial would
have value 1 on all feature vectors of C0 and would have value 0 on all
feature vectors from C1). We want to learn the monomial given some
examples. Consider a learning algorithm for this as given below. We
start with the monomial x1x̄1x2x̄2 . . . xnx̄n. (Note that this monomial
classifies all patterns as C1). At each iteration we modify the current
monomial as follows. If the next example is from C1 we do nothing. If
the next example is from C0, then, for each i, 1 ≤ i ≤ n, if the example
has value 1 for ith feature, then we delete the literal x̄i (if present) from
the current monomial; if the example has value 0 for ith feature, then
we delete the literal xi (if present) from the current monomial. Show
that this is a PAC-learning algorithm. That is, show that given any ǫ

and δ, we can find n such that after n random examples, the probability
that the error of the classifier learnt by the algorithm is greater than ǫ

is less than δ.

Nonlinear Classifiers (Modules 8-9)

26. Suppose we have a 3-class classification problem. Consider two different
architectures of single hidden layer feedforward networks with sigmoidal
activation functions. Both have the same number of input and hidden
nodes. In the first architecture we have only one output node and we
are going to use values 0.1, 0.5 and 0.9 as the desired outputs for the
three classes. In the second architecture we will have three output
nodes and are going to use the three unit vectors (that is, vectors like
[1 0 0]T etc) as the desired outputs for the three classes. Is one of
these architectures better than the other from the point of view of
approximating the Bayes classifier? If so, is there any ‘extra cost’ in
using this better architecture?

27. Consider a 3-layer feedforward network with sigmoidal activation func-
tion. Given any training set, is it always possible to achieve zero error
on training data by having sufficiently large number of hidden nodes?
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Is it possible to achieve zero training error if we use RBF network
instead? Explain.

28. Consider a specific 3-layer feedforward network with sigmoidal activa-
tion functions for all hidden nodes. Can we construct another 3-layer
feedforward network (with same architecture) where hidden units use
hyperbolic tangent as the activation function such that the two net-
works compute the same function?

29. For a linear SVM, let W ∗, b∗ be the optimal hyperplane and let µ∗

i be
the optimal Lagrange multipliers. Show that

(W ∗)T W ∗ =
∑

i

µ∗

i .

30. Suppose we are using a SVM with slack variables. (That is the one
with primal objective function 0.5W T W + C

∑

ξ). Suppose the given
training data is linearly separable. Would the SVM always output a
separating hyperplane?

31. Consider a pattern recognition problem in ℜ2, for an SVM, with the
following training samples:

Class +1: (0.5, 0.5), (0, 2), (0, 1), (2, 2)
Class -1: (0, 0)

(a) By solving the (primal) optimization problem, show that the op-
timal hyperplane is given by W ∗ = [2 2]T and b∗ = −1.

(b) Suppose we want to solve this problem using the slack variables,
ξi. That is, we want to maximize 0.5W T W + C

∑

ξi subject to
constraints 1 − yi[W

T xi + b] − ξi ≤ 0 and ξi ≥ 0. Take C = 1.
For the W, b obtained in part (a), find the smallest values for ξi

so that all constraints are satisfied. At these W, b, ξi what is the
value of the objective function being minimized. Now consider
another hyperplane given by W = [0 1]T and b = −1. (That is,
the hyperplane is a line parallel to x-axis and passing through
(0,1)). For these W, b find the smallest possible values for ξi so
that all constraints are satisfied. What is the value of the objective
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function at these W, b, ξi. Based on all this, can you say whether
the optimal separating hyperplane found in part (a) would also be
the optimal solution to the current optimization problem (which
includes the slack variables ξi).

(c) Can you suggest values for C so that the optimal separating hy-
perplane found in part (a) would be the optimal solution to the
optimization problem with the slack variables. Explain.
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