Integrated Circuit Operational Amplifiers Analog Integrated Circuit Design A video course under the NPTEL

Nagendra Krishnapura

Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India

National Programme on Technology Enhanced Learning

Nagendra Krishnapura Integrated Circuit Operational Amplifiers

くロト (得) (目) (日)

Differential pair opamp

Nagendra Krishnapura Integrated Circuit Operational Amplifiers

Cascode output resistance

• Output resistance looking into one side of the differential pair is $2/g_{ds1}$ ($g_{m1} = g_{mc}$ in the figure)

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- Bias values in black
- Incremental values in red
- Impedances in blue

Total quantity = Bias + increment

★ Ξ → < Ξ → </p>

Differential pair: Quiescent condition

æ

Differential pair: Transconductance

< ∃→

-2

Differential pair: Output conductance

< E> = E

Differential pair: Noise

- Carry out small signal linear analysis with one noise source at a time
- Add up the results at the output (current in this case)
- Add up corresponding spectral densities
- Divide by gain squared to get input referred noise

Differential pair opamp

G_m	g_{m1}
Gout	$g_{ds1}+g_{ds3}$
A_o	$g_{m1}/(g_{ds1}+g_{ds3})$
A _{cm}	$g_{ds0}/2g_{m3}$
C_i	$C_{gs1}/2$
ω_{u}	g_{m1}/C_L
p_k, z_k	$p_2 = -g_{m3}/(C_{db1} + C_{db3} + 2C_{gs3}); z_1 = 2p_2$
S_{vi}	$16kT/3g_{m1}\left(1+g_{m3}/g_{m1} ight)$
σ^2_{Vos}	$\sigma_{VT1}^2 + (g_{m3}/g_{m1})^2 \sigma_{VT3}^2$
V _{cm}	$\geq V_{T1} + V_{DSAT1} + V_{DSAT0}$
	$\leq \textit{V}_{\textit{dd}} - \textit{V}_{\textit{DSAT}3} - \textit{V}_{\textit{T}3} + \textit{V}_{\textit{T}1}$
Vout	$\geq V_{cm} - V_{T1}$
	$\leq \textit{V}_{\textit{dd}} - \textit{V}_{\textit{DSAT}3}$
SR	$\pm I_0/C_L$
I _{supply}	$I_0 + I_{ref}$

▶ ★ 臣 ▶ ...

< 🗇 ▶

æ

Telescopic cascode: Quiescent condition

Telescopic cascode: Transconductance

▶ < Ξ >

Telescopic cascode: Output conductance

Telescopic cascode opamp

ヨト くヨト

æ

Telescopic cascode opamp

G_m	<i>g</i> _{m1}				
Gout	$g_{ds1}g_{ds5}/g_{m5}+g_{ds3}g_{ds7}/g_{m7}$				
A_o	$g_{m1}/(g_{ds1}g_{ds5}/g_{m5}+g_{ds3}g_{ds7}/g_{m7})$				
A _{cm}	$g_{ds0}/2g_{m3}$				
C_i	$C_{gs1}/2$				
ω_{u}	g_{m1}/C_L				
p_k, z_k	$p_{2}=-g_{m3}/(C_{db1}+C_{db3}+2C_{gs3})$				
	$ ho_3=-g_{m5}/C_{ ho 5}$				
	$ ho_4=-g_{m7}/C_{ ho7}$				
	$p_{2,4}$ appear for one half and cause mirrror zeros				
	$p_{2,4}$ appear for one half and cause mirrror zeros				
S _{vi}	$p_{2,4}$ appear for one half and cause mirror zeros $16kT/3g_{m1}(1+g_{m3}/g_{m1})$				
$S_{vi} \sigma^2_{Vos}$	$p_{2,4}$ appear for one half and cause mirror zeros $\frac{16kT/3g_{m1}(1+g_{m3}/g_{m1})}{\sigma_{VT1}^2+(g_{m3}/g_{m1})^2\sigma_{VT3}^2}$				
$S_{vi} \sigma^2_{Vos} V_{out}$	$ \begin{array}{c} p_{2,4} \text{ appear for one half and cause mirror zeros} \\ \hline 16kT/3g_{m1} \left(1+g_{m3}/g_{m1}\right) \\ \sigma_{VT1}^2 + \left(g_{m3}/g_{m1}\right)^2 \sigma_{VT3}^2 \\ \hline \geq V_{biasn1} - V_{T5} \end{array} $				
$\frac{S_{Vi}}{\sigma_{Vos}^2}$	$\begin{array}{l} p_{2,4} \text{ appear for one half and cause mirror zeros} \\ \hline 16kT/3g_{m1} \left(1+g_{m3}/g_{m1}\right) \\ \sigma_{VT1}^2 + \left(g_{m3}/g_{m1}\right)^2 \sigma_{VT3}^2 \\ \geq V_{biasn1} - V_{T5} \\ \leq V_{biasp1} + V_{T7} \end{array}$				
$\frac{S_{vi}}{\sigma_{Vos}^2}$ $\frac{V_{out}}{SR}$	$\begin{array}{c} p_{2,4} \text{ appear for one half and cause mirror zeros} \\ \hline 16kT/3g_{m1} \left(1+g_{m3}/g_{m1}\right) \\ \sigma_{VT1}^2 + \left(g_{m3}/g_{m1}\right)^2 \sigma_{VT3}^2 \\ \hline \geq V_{biasn1} - V_{T5} \\ \hline \leq V_{biasp1} + V_{T7} \\ \hline \pm I_0/C_L \end{array}$				
$\frac{S_{vi}}{\sigma_{Vos}^2}$ $\frac{\sigma_{Vos}^2}{V_{out}}$ $\frac{SR}{I_{supply}}$	$\begin{array}{c} p_{2,4} \text{ appear for one half and cause mirror zeros} \\ \hline 16kT/3g_{m1} \left(1+g_{m3}/g_{m1}\right) \\ \sigma_{VT1}^2 + \left(g_{m3}/g_{m1}\right)^2 \sigma_{VT3}^2 \\ \hline \geq V_{biasn1} - V_{T5} \\ \leq V_{biasp1} + V_{T7} \\ \hline \pm I_0/C_L \\ \hline I_0 + I_{ref} \end{array}$				

Folded cascode: Quiescent condition

▶ ★ 臣 ▶

큰

Folded cascode: Transconductance

<= ≣⇒

Folded cascode: Output conductance

► < Ξ >

Folded cascode opamp

∃ 990

Folded cascode opamp

G_m	g_{m1}				
Gout	$(g_{d extsf{s1}}+g_{d extsf{s9}})g_{d extsf{s5}}/g_{m extsf{m5}}+g_{d extsf{s3}}g_{d extsf{s7}}/g_{m extsf{m7}}$				
A_o	$g_{m1}/((g_{ds1}+g_{ds9})g_{ds5}/g_{m5}+g_{ds3}g_{ds7}/g_{m7})$				
A _{cm}	$g_{ds0}/2g_{m3}$				
C_i	$C_{gs1}/2$				
ω_{u}	g_{m1}/C_L				
p_k, z_k	$p_{2}=-g_{m3}/(C_{db1}+C_{db3}+2C_{gs3})$				
	$p_3=-g_{m5}/C_{p5}$				
	$ ho_4=-g_{m7}/C_{ ho7}$				
	$p_{2,4}$ appear for one half and cause mirrror zeros				
S _{vi}	$16kT/3g_{m1}\left(1+g_{m3}/g_{m1}+g_{m9}/g_{m1} ight)$				
σ^2_{Vos}	$\sigma_{VT1}^2 + (g_{m3}/g_{m1})^2 \sigma_{VT3}^2 + (g_{m9}/g_{m1})^2 \sigma_{VT9}^2$				
Vout	$\geq \textit{V}_{\textit{biasn1}} - \textit{V}_{\textit{T5}}$				
	$\leq V_{biasp1} + V_{T7}$				
SR	$\pm \min\{I_0, I_1\}/C_L$				
Isupply	$I_0 + I_1 + I_{ref}$				

-2

- All nMOS bulk terminals to ground
- All pMOS bulk terminals to V_{dd}
- A_{cm} has an additional factor $g_{m1}/(g_{m1}+g_{mb1})$
- $g_{m5} + g_{mb5}$ instead of g_{m5} in cascode opamp results
- $g_{m7} + g_{mb7}$ instead of g_{m7} in cascode opamp results

伺き イヨト イヨト 三星

Two stage opamp

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Two stage opamp

- First stage can be Differential pair, Telescopic cascode, or Folded cascode; Ideal g_{m1} assumed in the analysis
- Second stage: Common source amplifier
- Frequency response is the product of frequency responses of the first stage *g_m* and a common source amplifier driven from a current source

Common source amplifier: Frequency response

$$\frac{V_o(s)}{V_d(s)} = \left(\frac{g_{m_1}g_{m_{11}}}{G_1G_L}\right) \frac{sC_c(R_c - 1/g_{m_{11}}) + 1}{a_3s^3 + a_2s^2 + a_1s + 1} \\
a_3 = \frac{R_cC_1C_LC_c}{G_1G_L} \\
a_2 = \frac{C_1C_c + C_cC_L + C_LC_1 + R_cC_c(G_1C_L + C_1G_L)}{G_1G_L} \\
a_1 = \frac{C_c(g_{m_{11}} + G_1 + G_L + G_1G_LR_c) + C_1G_L + G_1C_L}{G_1G_L}$$

- G₁: Total conductive load at the input
- *G_L*: Total conductive load at the output
- C1: Total capacitive load at the input
- C_L: Total capacitive load at the output

Common source amplifier: Poles and zeros

$$\begin{array}{lll} p_{1} &\approx & -\frac{G_{1}}{C_{c}(\frac{g_{m_{11}}}{G_{L}}+1+\frac{G_{1}}{G_{L}}+G_{1}R_{c})+C_{1}(1+\frac{G_{1}}{G_{L}})} \\ p_{2} &\approx & -\frac{g_{m_{11}}\frac{C_{c}}{C_{1}+C_{c}}+G_{L}+G_{1}\frac{C_{c}+C_{L}}{C_{1}+C_{c}}+G_{1}G_{L}R_{c}\frac{C_{c}}{C_{1}+C_{c}}} \\ p_{3} &\approx & -\left(\frac{1}{R_{c}}\left(\frac{1}{C_{L}}+\frac{1}{C_{c}}+\frac{1}{C_{1}}\right)+\frac{G_{1}}{C_{1}}+\frac{G_{L}}{C_{L}}\right) \\ z_{1} &= & \frac{1}{(1/g_{m_{11}}-R_{c})C_{c}} \end{array}$$

Unity gain frequency

$$\omega_{u} \approx \frac{g_{m_{1}}}{C_{c}\left(1 + \frac{G_{L}}{g_{m_{11}}} + \frac{G_{1}}{g_{m_{11}}} + \frac{G_{1}G_{L}R_{c}}{g_{m_{11}}}\right) + C_{1}\left(\frac{G_{L}}{g_{m_{11}}} + \frac{G_{1}}{g_{m_{11}}}\right)}$$

Common source amplifier: Frequency response

- Pole splitting using compensation capacitor C_c
 - p1 moves to a lower frequency
 - p₂ moves to a higher frequency (For large C_c,

 $p_2 = g_{m_{11}}/C_L$

- Zero cancelling resistor R_c moves z₁ towards the left half s plane and results in a third pole p₃
 - z_1 can be moved to ∞ with $R_c = 1/g_{m_{11}}$
 - *z*₁ can be moved to cancel *p*₂ with *R_c* > 1/*g_{m11}* (needs to be verified against process variations)
 - Third pole p_3 at a high frequency
- Poles and zeros from the first stage will appear in the frequency response—Y_{m1}(s) instead of g_{m1} in V_o/V_i above
 - Mirror pole and zero
 - Poles due to cascode amplifiers

Compensation cap sizing

$$p_2 \approx -rac{g_{m_{11}}rac{C_c}{C_1+C_c}}{rac{C_1C_c}{C_1+C_c}+C_L} \ \omega_u \approx rac{g_{m1}}{C_c}$$

Phase margin (Ignoring p_3, z_1, \ldots)

$$\phi_{M} = \tan^{-1} \frac{|p_{2}|}{\omega_{u}}$$
$$\frac{|p_{2}|}{\omega_{u}} = \tan \phi_{M}$$
$$\frac{g_{m11}}{g_{m1}} \left(\frac{C_{c}}{C_{L}}\right)^{2} = \frac{C_{c}}{C_{L}} \left(1 + \frac{C_{1}}{C_{L}}\right) \tan \phi_{M} + \frac{C_{1}}{C_{L}} \tan \phi_{M}$$

• For a given ϕ_M , solve the quadratic to obtain C_c/C_L

• If C_1 is very small, $p_2 \approx -g_{m2}/C_L$; further simplifies calculations

Two stage opamp

伺き くほき くほう

	Differential	Telescopic	Folded	Two
	pair	cascode	cascode	stage
Gain	—	++	+	++
Noise	=	=	high	=
Offset	=	=	high	=
Swing	—	—	+	++
Speed	++	+	_	+

▲ロト ▲圖ト ▲ ヨト ▲ ヨト -

∃ 990

Differential pair

- Low accuracy (low gain) applications
- Voltage follower (capacitive load)
- Voltage follower with source follower (resistive load)
- In bias stabilization loops (effectively two stages in feedback)

Telescopic cascode

- Low swing circuits
- Switched capacitor circuits
 - Capacitive load
 - Different input and output common mode voltages
- First stage of a two stage opamp
 - Only way to get high gain in fine line processes

Folded cascode

- Higher swing circuits
- Higher noise and offset
- Lower speed than telescopic cascode
 - Low frequency pole at the drain of the input pair
- Switched capacitor circuits (Capacitive load)
- First stage of a two stage class AB opamp

Two stage opamp

- Highest possible swing
- Resistive loads
- Capacitive loads at high speed
- "Standard" opamp: Miller compensated two stage opamp
- Class AB opamp: Always two (or more) stages

Opamps: pMOS versus nMOS input stage

nMOS input stage

- Higher *g_m* for the same current
- Suitable for large bandwidths
- Higher flicker noise (usually)
- pMOS input stage
 - Lower g_m for the same current
 - Lower flicker noise (usually)
 - Suitable for low noise low frequency applications

伺 とくき とくきと

Fully differential circuits

- Two identical half circuits with some common nodes
- Two arms of the differential input applied to each half
- Two arms of the differential output taken from each half

프 > 프

Differential half circuit

Symmetrical linear (or small signal linear) circuit under fully differential (antisymmetric) excitation

- Nodes along the line of symmetry at 0 V (symmetry, linearity)
- Analyze only the half circuit to find the transfer function

Common mode half circuit

Symmetrical circuit (maybe nonlinear) under common mode (symmmetric) excitation

- Nodes in each half at identical voltages (symmetry)
- Fold over the circuit and analyze the half circuit

≣ ► < ≣ ►

Common mode feedback

- Common mode feedback circuit for setting the bias
- Detect the output common mode and force it to be *V*_{o,cm} via feedback

프 🖌 🛪 프 🕨

Common mode feedback loop

- Common mode feedback loop has to be stable
- Analyze it by breaking the loop and computing the loop gain with appropriate loading at the broken point
- Apply a common mode step/pulse in closed loop and ensure stability

프 🖌 🛪 프 🕨

Fully differential circuits: Noise

- Calculate noise spectral density of the half circuit
- Multiply by 2×

ヨト・モラト

Fully differential circuits: Offset

- Calculate mean squared offset of the half circuit
- Multiply by 2× if mismatch (e.g. ΔV_T) wrt ideal device is used

★ Ξ > < Ξ >

Fully differential circuits: Offset

- Calculate mean squared offset of the half circuit
- Multiply by 1× if mismatch between two real devices is used

★ Ξ > < Ξ >