Transistor mismatch in deep sub-micron technology

- Factors causing transistor mismatch
- Modeling the transistor mismatch
- Controlling mismatch effect at process/device level
- Impact of transistor mismatch in sense-amplifier design
- Controlling mismatch effect at circuit level

Transistor Mismatch Effects

3 identical transistors in a chip at the circuit design phase

The structure of 3 transistors after the completion of IC processing

Factors Causing Mismatch

1.Intrinsic type

- · Discrete dopant effect
- Interface state density fluctuations

2.Extrinsic type due to random variation in:

- Gate length and width
- · Oxide thickness
- Implant dose
- Implant energy
- Anneal temperature
- Gate & S/D overlap
- · Spacer thickness

Device parameters affected by process parameters

- Ioff, the leakage current
- I_{on}, the saturation current
- V_t, the threshold voltage
- S, the Sub threshold slope
- g_m, the Tranconductance.
- Various R s, C s and parasitics

Impact of process parameters on circuit parameters

- Circuit performance has a direct relation on process in a complex way.
- The relation between circuit parameter to process parameter is highly nonlinear.
- Some of the Process level parameters are statistically correlated. Faiz et al

ADC Yield

The higher precision requires very low mismatch

The yield for high precision drops off very fast

Layout Issues

Orientation

Symmetry

Adding dummy layers

Unit cell repetition

Common centroid

Avoiding interconnect resistance

Antenna Effect

Folding of MOSFET

Multi-Finger Transistors

WIDE Transistor

Many finger Layout

DIFFERENTIAL PAIR

- (b)Different orientations
 - (c) Gate Aligned
 - (d)Parallel Gates

Effect of Gate shadowing

Gate Aligned Vs. Parallel Gates

Dummy Devices Added

Symmetry

An unrelated metal line going in the vicinity of one of the transistor

Symmetry should be preserved by adding another similar line

Orientation

Matched transistors should be oriented in same direction

Photolythography process has different biases in different axes, hence the requirement

Linear Gradient Problem

AI A2 B

EE 618 L 26 / Slide 16

Assuming Gradient is Linear

 $A1 = mz_{1} + b$ $A2 = mz_{3} + b$ $B = mz_{3} + b$

If
$$x_3 \neq \frac{x_1+x_2}{2}$$

However if
$$x_1-x_2=x_2-x_2$$
or $x_2=\frac{x_1+x_2}{2}$
Then Matching is Possible.

EE 618 L 26 / Slide 17

One Dimensional Cross-coupling

Common centroid

Common centroid configuration eliminates the first order gradient effects of parameters along both the axes

Use of n-Well Resistors

Capacitors

EE 618 L2c / Slide 22

metale=

Poly II

Polys

Layout out of Interconnected capacitors

Interconnect routing

To distribute I_R in a large circuit, the resistance of ground bus makes $V_{gsn} \neq V_{gsl}$, thus affecting the current mirroring significantly

Interdigitation and dummy layer

Interdigitation distributes the transistors uniformly

Dummy poly line eliminates loading effect in photo and etch

Unit cell repetition

Wide transistor should be laid out as parallel transistors of unit width to decrease gate resistance, s/d area capacitance as well as to counter ΔW effect

Disproportionate aspect ratio can be managed as below:

Layout of Resistances R2/R1=5

Gradient Effect

Interconnect routing

Decrease the ground bus resistance

Provide multiple ground node connections if possible And use short span ground bus

Keep several reference distributed in a large circuit and mirror the reference locally